Decoding algorithm

Now we describe a decoding algorithm. We denote $\mathbf{e}_{j}=00 \ldots 010 \ldots$, where 1 is the j-th entry.
Decoding algorithm: Assume we have received a message $\mathbf{v} \in \mathbf{Z}_{2}^{n}$.
(1) If $H \mathbf{v}=\mathbf{0}$, then the message is correct.
(2) If $H \mathbf{v}=\mathbf{h}_{j}$, where \mathbf{h}_{j} is the j-th column of H, then we decode the message $\mathbf{v} \mapsto \mathbf{v}+\mathbf{e}_{j}$.
(3) If (1) and (2) do not apply, we ask to resend the message again since there are at least two errors, and we do not have a reliable way to decode \mathbf{v}.

An encoding function $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$ given by a generator matrix $G=\left[I_{m} \mid A\right]$, where $\alpha: \mathbf{w} \rightarrow \mathbf{w} G$, is an example of a group code, i.e., when the $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$ is a group homomorphism.

Example. We consider the encoding function $\alpha: \mathbf{Z}_{2}^{4} \rightarrow \mathbf{Z}_{2}^{7}$ given by the matrix

$$
G=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right], \quad \alpha:\left[w_{1}, w_{2}, w_{3}, w_{4}\right] \mapsto\left[w_{1}, w_{2}, w_{3}, w_{4}\right] G
$$

Then we obtain the parity-check matrix

$$
H=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

We notice that if we add any non-zero column to H, than we will have to repeat one of the columns of H. Indeed, there are 3 elements in each column, and there are $2^{3}=8$ binary strings of the length 3 . Since H cannot have a zero column, it means that $2^{3}-1=7$ is the maximal number of non-zero columns for such a matrix H.
Let $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$ given by a generator matrix $G=\left[I_{m} \mid A\right]$, then we denote $k=n-m$, and then $H=\left[B \mid I_{k}\right]$. Since H should have different columns, the maximal number of columns in H is $2^{k}-1$. In that case B is $k \times\left(2^{k}-1-k\right)$-matrix. In the case when the parity-check matrix H has maximal number of columns, we call H a Hamming matrix.

Examples. With $k=4$, a possible Hamming matrix is

$$
H=\left[\begin{array}{lllllllllll|llll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

With $k=5$, a possible Hamming matrix is
$H=\left[\begin{array}{llllllllllllllllllllllllll|lllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
Clearly, we can use any of these matrices for a parity-check.
Lemma 2. Assume $G=\left[I_{m} \mid A\right]$ is a generator matrix, and $H=\left[B \mid I_{k}\right]$ is the corresponding parity-check matrix with maximal number of columns $2^{k}-1-k$. Let $C=\alpha\left(\mathbf{Z}_{2}^{m}\right)$. Then there exist two strings $\mathbf{x}, \mathbf{y} \in C$ such that $\delta(\mathbf{x}, \mathbf{y})=3$.
Proof. Let $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$ be the corresponding encoding function. We have that $n-m=k$, and $n=2^{k}-1$. Thus $m=2^{k}-1-k$. Let $\mathbf{x} \in C=\alpha\left(\mathbf{Z}_{2}^{m}\right)$. We consider a ball $B_{1}(\mathbf{x})$. Since there are exactly $n=2^{k}-1$ strings $\mathbf{z} \in \mathbf{Z}_{2}^{n}$ such that $\delta(\mathbf{x}, \mathbf{z})=1$, the ball $B_{1}(\mathbf{x})$ contains $n+1=2^{k}-1+1=2^{k}$ elements.

Now let $\mathbf{x}, \mathbf{y} \in C$. We choose any two elements $\mathbf{z} \in B_{1}(\mathbf{x})$ and $\mathbf{u} \in B_{1}(\mathbf{y})$. From Lemma $1, \delta(\mathbf{x}, \mathbf{y}) \geq 3$. We notice:

$$
3 \leq \delta(\mathbf{x}, \mathbf{y}) \leq \delta(\mathbf{x}, \mathbf{z})+\delta(\mathbf{z}, \mathbf{u})+\delta(\mathbf{u}, \mathbf{y}) \leq 1+\delta(\mathbf{z}, \mathbf{u})+1
$$

We obtain that $\delta(\mathbf{z}, \mathbf{u}) \geq 1$. In particular, $\mathbf{z} \neq \mathbf{u}$, and $B_{1}(\mathbf{x}) \cap B_{1}(\mathbf{y})=\emptyset$.
Since the balls $B_{1}(\mathbf{y})$ are disjoint, and we have 2^{m} elements in C, we obtain that the union

$$
\bigcup_{\mathbf{x} \in C} B_{1}(\mathbf{x})
$$

contains $2^{m} \cdot 2^{k}=2^{m+k}=2^{n}$ elements. This means that

$$
\bigcup_{\mathbf{x} \in C} B_{1}(\mathbf{x})=\mathbf{Z}_{2}^{n}
$$

Now we choose any $\mathbf{x} \in C$ and take $\mathbf{e}_{i j} \in \mathbf{Z}_{2}^{n}$, a binary sequence with 1 's in i-th and j-th places, and zeros otherwise. Let $\mathbf{z}=\mathbf{x}+\mathbf{e}_{i j}$. Clearly, $\delta(\mathbf{x}, \mathbf{z})=2$, so $\mathbf{z} \notin B_{1}(\mathbf{x})$. However, $\mathbf{z} \in B_{1}(\mathbf{y})$ for some $\mathbf{y} \in C$. Assume that $\mathbf{z}=\mathbf{y}$, then we would have that $\mathbf{z} \in C$, however, $\delta(\mathbf{x}, \mathbf{z}) \geq 3$ by Lemma 1. Contradiction. Then we have that $\mathbf{z} \neq \mathbf{y}$, and $\delta(\mathbf{y}, \mathbf{z})=1$. Then we have

$$
\delta(\mathbf{x}, \mathbf{y}) \leq \delta(\mathbf{x}, \mathbf{z})+\delta(\mathbf{z}, \mathbf{y})=2+1=3
$$

We obtain that $\delta(\mathbf{x}, \mathbf{y}) \leq 3$, and Lemma 1 gives us that $\delta(\mathbf{x}, \mathbf{y}) \geq 3$. This means $\delta(\mathbf{x}, \mathbf{y})=3$.

