Summary on Lecture 19, May 11th, 2016
The parity-check and generator matrices, more.
Example. We consider the encoding function $\alpha: \mathbf{Z}_{2}^{3} \rightarrow \mathbf{Z}_{2}^{6}$ given by the matrix

$$
G=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right], \quad \alpha:\left[w_{1}, w_{2}, w_{3}\right] \mapsto\left[w_{1}, w_{2}, w_{3}\right] G
$$

Since $\mathbf{Z}_{2}^{3}\{000,001,010,011,100,101,110,111\}$, we compute:

$$
C=\alpha\left(\mathbf{Z}_{2}^{3}\right)=\{000000,001101,010011,011110,100110,101011,110101,111000\}
$$

We notice that $\delta(x, y)>2$ for all $x, y \in C$. It means that all single errors could be detected and corrected.
We examine closely the homomorphism $\alpha: \mathbf{Z}_{2}^{3} \rightarrow \mathbf{Z}_{2}^{6}$:

$$
\alpha:\left[w_{1}, w_{2}, w_{3}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]=\left[w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right]
$$

where

$$
\left\{\begin{array} { l }
{ w _ { 4 } = w _ { 1 } + w _ { 3 } } \\
{ w _ { 5 } = w _ { 1 } + w _ { 2 } } \\
{ w _ { 6 } = w _ { 2 } + w _ { 3 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
w_{1}+w_{3}+w_{4}=0 \\
w_{1}+w_{2}+w_{5}=0 \\
w_{2}+w_{3}+w_{6}=0
\end{array}\right.\right.
$$

Here we keep in mind that we work mod 2. In matrix notations, we have:

$$
\left[\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left[w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right]^{T}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We denote:

$$
H=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]=\left[B \mid I_{3}\right], \quad \text { where } B=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We notice that

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]=\left[I_{3} \mid A\right], \quad \text { where } I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

We see that $B=A^{T}$. Let $\mathbf{c} \in C$, then

$$
H \mathbf{c}^{T}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let $\mathbf{c}=100110$, and $\tau(\mathbf{c})=101110$. Then we can check:

$$
H \tau(\mathbf{c})^{T}=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

We notice that $H \tau(\mathbf{c})^{T}$ is exactly the third column of the matrix H. We also have that $\tau(\mathbf{c})=101110=\mathbf{c}+\mathbf{e}$, where $\mathbf{e}=001000$. We have:

$$
H \tau(\mathbf{c})^{T}=H(\mathbf{c}+\mathbf{e})^{T}=H \mathbf{c}^{T}+H \mathbf{e}^{T}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

We see that we can see immediately that the third digit of $\tau(\mathbf{c})$ should be corrected to recover \mathbf{c}.

Matrix Codes: the general case

Let $n>m$, and we consider a function $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$ given as $\alpha(\mathbf{w})=\mathbf{w} G$, where G is $m \times n$-matrix over \mathbf{Z}_{2}. Furthemore, we assume that G has the form $G=\left[I_{m} \mid A\right]$, where I_{m} is the identity matrix, and A is $m \times(n-m)$ matrix over \mathbf{Z}_{2}. Then the matrix G is called a generating matrix. The code is given then as $C=\alpha\left(\mathbf{Z}_{2}^{m}\right) \subset \mathbf{Z}_{2}^{n}$. The matrix $H=\left[B, I_{n-m}\right]$, where $B=A^{T}$ is called the parity check matrix.

We have that if $\mathbf{w}=\left[w_{1} \ldots w_{m}\right]$, then

$$
\alpha:\left[w_{1} \ldots w_{m}\right] \mapsto\left[w_{1} \ldots w_{m} w_{m+1} \ldots w_{n}\right]
$$

where $H\left[w_{1} \ldots w_{m} w_{m+1} \ldots w_{n}\right]^{T}=\mathbf{0}$, where $\mathbf{0}$ is $(n-m)$-dimensional column zero vector.
Lemma 1. Let $G=\left[I_{m} \mid A\right]$ be a generating matrix and $H=\left[B \mid I_{n-m}\right]$ be the corresponding parity check matrix. Assume that
(i) the matrix H does not contain a zero column;
(ii) the matrix H does not contain two identical columns.

Then the distance $\delta(\mathbf{x}, \mathbf{y})>2$ for all $\mathbf{x}, \mathbf{y} \in C$ with $\mathbf{x} \neq \mathbf{y}$, and all single errors could be detected and corrected.

Proof. It is enough to show that a distance between different strings in C is greater than two.
Assume we have two strings $\mathbf{x}, \mathbf{y} \in C$ with $\delta(\mathbf{x}, \mathbf{y})=1$. Then $\mathbf{y}=\mathbf{x}+\mathbf{e}$, where \mathbf{e} is a string with just one entry 1 and all other entries are zeros. Say, we have $\mathbf{e}=[0 \ldots 010 \ldots 0]$, where 1 is the k-th entry. Then

$$
\mathbf{0}=H \mathbf{y}^{T}=H \mathbf{x}^{T}+H \mathbf{e}^{T}=H \mathbf{e}^{T},
$$

which is the k-th column of the matrix H. However, the matrix H does not have a zero column. Contradiction.

Assume we have two strings $\mathbf{x}, \mathbf{y} \in C$ with $\delta(\mathbf{x}, \mathbf{y})=2$. Then $\mathbf{y}+\mathbf{e}_{1}=\mathbf{x}+\mathbf{e}_{2}$, where \mathbf{e}_{1} and \mathbf{e}_{2} are strings with just one entry 1 and all other entries are zeros. Then we have that $\mathbf{y}=\mathbf{x}+\mathbf{e}_{1}+\mathbf{e}_{2}$, and we check:

$$
\mathbf{0}=H \mathbf{y}^{T}=H \mathbf{x}^{T}+H \mathbf{e}_{1}^{T}+H \mathbf{e}_{2}^{T}=H \mathbf{e}_{1}^{T}+H \mathbf{e}_{2}^{T}
$$

We obtain that $H \mathbf{e}_{1}^{T}=H \mathbf{e}_{2}^{T}$: we rememeber that we work $\bmod 2$. However, the matrix H does not have equal columns. Contradiction.

