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Summary on Lecture 18, May 9th, 2016

We continue with an introduction to coding theory.

Recall we have defined the Hamming metric as follows. Let x = (x1, . . . , xn) ∈ Zn
2 and y = (y1, . . . , yn) ∈ Zn

2 .
Then the distance between x and y is given as

δ(x,y) = |{ j | xj 6= yj }| ,

i.e., δ(x,y) is the number of corresponding entries of x and y which are different.
The pair (Zn

2 , δ) is an example of a metric space.

Definition. Let r ≥ 1 be a positive integer, and x ∈ Zn
2 . Then the set Br(x) = { y | δ(x,y) ≤ r } is called a

closed ball of radius r .

Theorem 2. Let m,n ∈ Z+ , and m < n . Assume α : Zm
2 → Zn

2 is an encoding function, such that C =
α(Zm

2 ) ⊂ Zn
2 .

(a) If δ(x,y) > r for all strings in C with x 6= y , then a transmission τ with δ(c, τ(c)) ≤ r can always be
detected, i.e., a transmission with at most r errors can always be detected.

(b) If δ(x,y) > 2r for all strings in C with x 6= y , then a transmission τ with δ(c, τ(c)) ≤ r can always be
detected and corrected.

Proof. (a) Let c ∈ C and we consider the ball Br(c). Then, since δ(x,y) > r for all strings in C with x 6= y ,
we have that Br(c) ∩ C = {c} : indeed, all other elements of C are further away from the center c of the ball.
It means that for any transmission with number of errors between 1 and r we should have that τ(c) 6= c , and
τ(c) ∈ Br(c). We obtain that τ(c) 6∈ C . This means that such an error could be detected.

(b) As we have seen, the condition δ(x,y) > 2r for all strings in C with x 6= y implies that for any transmission
with number of errors between 1 and r we should have that τ(c) 6= c , and τ(c) ∈ Br(c). On the other hand,
for every x ∈ C such that x 6= c , 2r < δ(c,x) ≤ δ(c, τ(c)) + δ(τ(c),x). By assumption, δ(c, τ(c)) < r . Then it
means that δ(τ(c),x) > r , or that τ(c) 6∈ Br(x). Since τ(c) ∈ Br(c), it means that c is the only element of C
which could be transmitted to τ(c). �

The parity-check and generator matrices.

Example. We consider the encoding function α : Z3
2 → Z6

2 given by the matrix

G =

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 , α : [w1, w2, w3] 7→ [w1, w2, w3]G

Since Z3
2 = {000, 001, 010, 011, 100, 101, 110, 111} , we compute:

C = α(Z3
2) = {000000, 001101, 010011, 011110, 100110, 101011, 110101, 111000}.

We notice that δ(x, y) > 2 for all x, y ∈ C . It means that all single errors could be detected and corrected.

We examine closely the homomorphism α : Z3
2 → Z6

2 :

α : [w1, w2, w3]

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 = [w1, w2, w3, w4, w5, w6],

where  w4 = w1 + w3

w5 = w1 + w2

w6 = w2 + w3

or

 w1 + w3 + w4 = 0
w1 + w2 + w5 = 0
w2 + w3 + w6 = 0

Here we keep in mind that we work mod 2. In matrix notations, we have: 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 [w1, w2, w3, w4, w5, w6]T =

 0
0
0


1



2

We denote:

H =

 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 = [B|I3], where B =

 1 0 1
1 1 0
0 1 1

 , I3 =

 1 0 0
0 1 0
0 0 1

 .
We notice that

G =

 1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

 = [I3|A], where I3 =

 1 0 0
0 1 0
0 0 1

 , A =

 1 1 0
0 1 1
1 0 1

 .
We see that B = AT . Let c ∈ C , then

HcT =

 0
0
0

 .
Let c = 100110, and τ(c) = 101110. Then we can check:

Hτ(c)T =

 1 0 1 1 0 0
1 1 0 0 1 0
0 1 1 0 0 1

 [1 0 1 1 1 0] =

 1
0
1


We notice that Hτ(c)T is exactly the third column of the matrix H . We also have that τ(c) = 101110 = c + e ,
where e = 001000. We have:

Hτ(c)T = H(c + e)T = HcT +HeT =

 0
0
0

 +

 1
0
1

 .
We see that we can see immediately that the third digit of τ(c) should be corrected to recover c .


