Summary on Lecture 18, May 9th, 2016

We continue with an introduction to coding theory.

Recall we have defined the Hamming metric as follows. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}_{2}^{n}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{Z}_{2}^{n}$. Then the distance between \mathbf{x} and \mathbf{y} is given as

$$
\delta(\mathbf{x}, \mathbf{y})=\left|\left\{j \mid x_{j} \neq y_{j}\right\}\right|
$$

i.e., $\delta(\mathbf{x}, \mathbf{y})$ is the number of corresponding entries of \mathbf{x} and \mathbf{y} which are different.

The pair $\left(\mathbf{Z}_{2}^{n}, \delta\right)$ is an example of a metric space.
Definition. Let $r \geq 1$ be a positive integer, and $\mathbf{x} \in \mathbf{Z}_{2}^{n}$. Then the set $B_{r}(\mathbf{x})=\{\mathbf{y} \mid \delta(\mathbf{x}, \mathbf{y}) \leq r\}$ is called a closed ball of radius r.

Theorem 2. Let $m, n \in \mathbf{Z}_{+}$, and $m<n$. Assume $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$ is an encoding function, such that $C=$ $\alpha\left(\mathbf{Z}_{2}^{m}\right) \subset \mathbf{Z}_{2}^{n}$.
(a) If $\delta(\mathbf{x}, \mathbf{y})>r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, then a transmission τ with $\delta(\mathbf{c}, \tau(\mathbf{c})) \leq r$ can always be detected, i.e., a transmission with at most r errors can always be detected.
(b) If $\delta(\mathbf{x}, \mathbf{y})>2 r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, then a transmission τ with $\delta(\mathbf{c}, \tau(\mathbf{c})) \leq r$ can always be detected and corrected.

Proof. (a) Let $\mathbf{c} \in C$ and we consider the ball $B_{r}(\mathbf{c})$. Then, since $\delta(\mathbf{x}, \mathbf{y})>r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, we have that $B_{r}(\mathbf{c}) \cap C=\{\mathbf{c}\}$: indeed, all other elements of C are further away from the center \mathbf{c} of the ball. It means that for any transmission with number of errors between 1 and r we should have that $\tau(\mathbf{c}) \neq \mathbf{c}$, and $\tau(\mathbf{c}) \in B_{r}(\mathbf{c})$. We obtain that $\tau(\mathbf{c}) \notin C$. This means that such an error could be detected.
(b) As we have seen, the condition $\delta(\mathbf{x}, \mathbf{y})>2 r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$ implies that for any transmission with number of errors between 1 and r we should have that $\tau(\mathbf{c}) \neq \mathbf{c}$, and $\tau(\mathbf{c}) \in B_{r}(\mathbf{c})$. On the other hand, for every $\mathbf{x} \in C$ such that $\mathbf{x} \neq \mathbf{c}, 2 r<\delta(\mathbf{c}, \mathbf{x}) \leq \delta(\mathbf{c}, \tau(\mathbf{c}))+\delta(\tau(\mathbf{c}), \mathbf{x})$. By assumption, $\delta(\mathbf{c}, \tau(\mathbf{c}))<r$. Then it means that $\delta(\tau(\mathbf{c}), \mathbf{x})>r$, or that $\tau(\mathbf{c}) \notin B_{r}(\mathbf{x})$. Since $\tau(\mathbf{c}) \in B_{r}(\mathbf{c})$, it means that \mathbf{c} is the only element of C which could be transmitted to $\tau(\mathbf{c})$.

The parity-check and generator matrices.

Example. We consider the encoding function $\alpha: \mathbf{Z}_{2}^{3} \rightarrow \mathbf{Z}_{2}^{6}$ given by the matrix

$$
G=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right], \quad \alpha:\left[w_{1}, w_{2}, w_{3}\right] \mapsto\left[w_{1}, w_{2}, w_{3}\right] G
$$

Since $\mathbf{Z}_{2}^{3}=\{000,001,010,011,100,101,110,111\}$, we compute:

$$
C=\alpha\left(\mathbf{Z}_{2}^{3}\right)=\{000000,001101,010011,011110,100110,101011,110101,111000\}
$$

We notice that $\delta(x, y)>2$ for all $x, y \in C$. It means that all single errors could be detected and corrected.
We examine closely the homomorphism $\alpha: \mathbf{Z}_{2}^{3} \rightarrow \mathbf{Z}_{2}^{6}$:

$$
\alpha:\left[w_{1}, w_{2}, w_{3}\right]\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]=\left[w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right]
$$

where

$$
\left\{\begin{array} { l }
{ w _ { 4 } = w _ { 1 } + w _ { 3 } } \\
{ w _ { 5 } = w _ { 1 } + w _ { 2 } } \\
{ w _ { 6 } = w _ { 2 } + w _ { 3 } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
w_{1}+w_{3}+w_{4}=0 \\
w_{1}+w_{2}+w_{5}=0 \\
w_{2}+w_{3}+w_{6}=0
\end{array}\right.\right.
$$

Here we keep in mind that we work mod 2. In matrix notations, we have:

$$
\left[\begin{array}{cccccc}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left[w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right]^{T}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We denote:

$$
H=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]=\left[B \mid I_{3}\right], \quad \text { where } B=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We notice that

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]=\left[I_{3} \mid A\right], \quad \text { where } I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

We see that $B=A^{T}$. Let $\mathbf{c} \in C$, then

$$
H \mathbf{c}^{T}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Let $\mathbf{c}=100110$, and $\tau(\mathbf{c})=101110$. Then we can check:

$$
H \tau(\mathbf{c})^{T}=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

We notice that $H \tau(\mathbf{c})^{T}$ is exactly the third column of the matrix H. We also have that $\tau(\mathbf{c})=101110=\mathbf{c}+\mathbf{e}$, where $\mathbf{e}=001000$. We have:

$$
H \tau(\mathbf{c})^{T}=H(\mathbf{c}+\mathbf{e})^{T}=H \mathbf{c}^{T}+H \mathbf{e}^{T}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

We see that we can see immediately that the third digit of $\tau(\mathbf{c})$ should be corrected to recover \mathbf{c}.

