Summary on Lecture 17, May 6th, 2016

Introduction to coding theory.

Here we describe basics of coding theory. Assume we have to transmit a binary signal, i.e. a string \mathbf{w} of 0 's and 1 's, say $\mathbf{w}=011010110$. We have to expect that there is a "noise" during this submition, and we have to use some techniques to correct an error.

Example. Assume we send a string $\mathbf{w}=011010110$. We can identify \mathbf{w} with the element $(0,1,1,0,1,0,1,1,0)$ of the cartisian product

$$
\mathbf{Z}_{2}^{9}=\underbrace{\mathbf{Z}_{2} \times \cdots \times \mathbf{Z}_{2}}_{9}
$$

Suppose the message we received is $\mathbf{v}=(0,1,1,0,1,1,1,0,0) \in \mathbf{Z}_{2}^{9}$ which is not the message we sent. This give us the error $\mathbf{e}=(0,0,0,0,0,1,0,1,0)$, where the entry 1 indicates the error during the transmission. Now we can write the identity in \mathbf{Z}_{2}^{9} :

$$
\mathbf{w}-\mathbf{v}=\mathbf{e} \quad \text { or } \quad \mathbf{v}+\mathbf{w}=\mathbf{e}
$$

Now we assume that for each digit of \mathbf{w} there is probability p of incorrect transmission. We also assume that the transmission of any signal does not in any way depend on the transmission of prior signals. Then there is a probability

$$
(1-p)^{5} p(1-p) p(1-p)=(1-p)^{7} p^{2}
$$

of having the error $e=(0,0,0,0,0,1,0,1,0)$.
Now we describe a general construction. Let $\mathbf{w}=w_{1} \ldots w_{n} \in\{0,1\}^{n}$ be a message to be transmitted. We identify \mathbf{w} with an element in \mathbf{Z}_{2}^{n}, i.e., we write

$$
\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbf{Z}_{2}^{n}
$$

Then we denote by $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ the received message, and by $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)$ the error, i.e., $\mathbf{e}=\mathbf{w}+\mathbf{v}$. Here is our general observation:

Lemma 1. Assume that for each digit of \mathbf{w} there is probability p of incorrect transmission, and that the transmission of any signal does not in any way depend on the transmission of prior signals.
(1) The probability that the error $\mathbf{e} \in \mathbf{Z}_{2}^{n}$ has a particular pattern with k 1's and $(n-k) 0$, is $p^{k}(1-p)^{n-k}$.
(2) The probability that the error $\mathbf{e} \in \mathbf{Z}_{2}^{n}$ has exactly k ''s and $(n-k) 0$ ', is $\binom{n}{k} p^{k}(1-p)^{n-k}$.

We notice that the probability to have an error in two entries is much smaller than to have an error in one entry. Say, if $p=0.01=10^{-2}$, the probability to have two errors is

$$
\binom{n}{2} 10^{-4}\left(1-10^{-2}\right)^{n-2} \cong\binom{n}{2} 10^{-4}\left(1-(n-2) 10^{-2(n-2)}\right) \cong\binom{n}{2} 10^{-4}=\frac{n(n-1)}{2} 10^{-4}
$$

which much smaller comparing with the probability to have just one error $n \cdot 10^{-2}$.
Improvement to Accuracy. Let m be the length of the signals to be transmitted. The idea is to increase the length from m to $n \gg m$ as follows. First, we choose an encoding function $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$. The set $C=\alpha\left(\mathbf{Z}_{2}^{m}\right) \subset \mathbf{Z}_{2}^{n}$ is called the code, and its elements are called the code words.
Example 1. Let $\alpha: \mathbf{Z}_{2}^{n} \rightarrow \mathbf{Z}_{2}^{n+1}$ is given as

$$
\alpha:\left(w_{1}, \ldots, w_{n}\right) \mapsto\left(w_{1}, \ldots, w_{n}, w_{1}+\cdots+w_{n}\right)
$$

Let q be a number of 1 's in $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$. Then last digit of $\alpha(\mathbf{w})$ is $q \bmod 2$. It means that $\alpha(\mathbf{w}) \in \mathbf{Z}_{2}^{n+1}$ has always even number of 1 's.
Now we make a transmission $\tau: \mathbf{Z}_{2}^{n+1} \rightarrow \mathbf{Z}_{2}^{n+1}$, and let $\mathbf{v}=\tau(\mathbf{w})$. Assume that the transmission τ went with an error in one entry. Then the message $\mathbf{v}=\tau(\mathbf{w})$ has odd number of 1 's; thus we know for sure that there is an error in the transmission. Here we can detect the error, but we have no means to correct it.

Example 2. Let $\alpha: \mathbf{Z}_{2}^{n} \rightarrow \mathbf{Z}_{2}^{3 n}$ is given as

$$
\alpha:\left(w_{1}, \ldots, w_{n}\right) \mapsto\left(w_{1}, \ldots, w_{n}, w_{1}, \ldots, w_{n}, w_{1}, \ldots, w_{n}\right)
$$

i.e. we just repeat \mathbf{w} two more times. Now we make a transmission $\tau: \mathbf{Z}_{2}^{3 n} \rightarrow \mathbf{Z}_{2}^{3 n}$, and let

$$
\mathbf{v}=\tau(\mathbf{w})=\left(v_{1}, \ldots, v_{n}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}, v_{1}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right)
$$

Then we use the following decoding function $\sigma: \mathbf{Z}_{2}^{3 n} \rightarrow \mathbf{Z}_{2}^{n}$:

$$
\left(v_{1}, \ldots, v_{n}, v_{1}^{\prime}, \ldots, v_{n}^{\prime}, v_{1}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}\right) \mapsto\left(u_{1}, \ldots, u_{n}\right)
$$

where u_{j} is equal to the majority of the elements $v_{j}, v_{j}^{\prime}, v_{j}^{\prime \prime}$. Clearly if at most one entry among $v_{j}, v_{j}^{\prime}, v_{j}^{\prime \prime}$ is different from w_{j}, then we still have $u_{j}=w_{j}$. Thus we correct the message if there is an error in just one entry.

The Hamming metric. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}_{2}^{n}$. Then we define a weight $\omega(\mathbf{x})$ as a number of non-zero entries x_{i}.

Definition 1. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{Z}_{2}^{n}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{Z}_{2}^{n}$. Then the distance between \mathbf{x} and \mathbf{y} is given as

$$
\delta(\mathbf{x}, \mathbf{y})=\left|\left\{j \mid x_{j} \neq y_{j}\right\}\right|,
$$

i.e., $\delta(\mathbf{x}, \mathbf{y})$ is the number of corresponding entries of \mathbf{x} and \mathbf{y} which are different.

Lemma 1. Let $\mathbf{x}, \mathbf{y} \in \mathbf{Z}_{2}^{n}$. Then $\delta(\mathbf{x}, \mathbf{y})=\omega(\mathbf{x}+\mathbf{y})$.
Proof. We note that $x_{j} \neq y_{j}$ if and only if $x_{j}+y_{j}=1 \bmod 2$.
Lemma 2. Let $\mathbf{x}, \mathbf{y} \in \mathbf{Z}_{2}^{n}$. Then $\omega(\mathbf{x}+\mathbf{y}) \leq \omega(\mathbf{x})+\omega(\mathbf{y})$.
Proof. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$, and $\mathbf{z}=\mathbf{x}+\mathbf{y}=\left(z_{1}, \ldots, z_{n}\right)$. Then it is easy to check that $z_{j} \leq x_{j}+y_{j} \bmod 2$. Indeed, if at least one of x_{j}, y_{j} is not equal to one, then $z_{j}=x_{j}+y_{j}$. If $x_{j}=1$ and $y_{j}=1$, then $z_{j}=0 \bmod 2$. It means that the number of 1 's in \mathbf{z} is less or equal to the sum of number of 1 's of \mathbf{x} and \mathbf{y}.

Theorem 1. The distance function $\delta: \mathbf{Z}_{2}^{n} \times \mathbf{Z}_{2}^{n} \rightarrow \mathbf{Z}_{\geq 0}$ satisfies the following properties:
(1) $\delta(\mathbf{x}, \mathbf{y}) \geq 0$;
(2) $\delta(\mathbf{x}, \mathbf{y})=0$ if and only if $\mathbf{x}=\mathbf{y}$;
(3) $\delta(\mathbf{x}, \mathbf{y})=\delta(\mathbf{y}, \mathbf{x})$;
(4) $\delta(\mathbf{x}, \mathbf{z}) \leq \delta(\mathbf{x}, \mathbf{y})+\delta(\mathbf{y}, \mathbf{z})$.

Exercises. Prove Theorem 1.
The pair $\left(\mathbf{Z}_{2}^{n}, \delta\right)$ is an example of a metric space.
Definition. Let $r \geq 1$ be a positive integer, and $\mathbf{x} \in \mathbf{Z}_{2}^{n}$. Then the set $B_{r}(\mathbf{x})=\{\mathbf{y} \mid \delta(\mathbf{x}, \mathbf{y}) \leq r\}$ is called a closed ball of radius r.
Theorem 2. Let $m, n \in \mathbf{Z}_{+}$, and $m<n$. Assume $\alpha: \mathbf{Z}_{2}^{m} \rightarrow \mathbf{Z}_{2}^{n}$ be an encoding function, such that $C=\alpha\left(\mathbf{Z}_{2}^{m}\right) \subset \mathbf{Z}_{2}^{n}$.
(a) If $\delta(\mathbf{x}, \mathbf{y})>r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, then a transmission τ with $\delta(\mathbf{c}, \tau(\mathbf{c})) \leq r$ can always be detected, i.e., a transmission with at most r errors can always be detected.
(b) If $\delta(\mathbf{x}, \mathbf{y})>2 r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, then a transmission τ with $\delta(\mathbf{c}, \tau(\mathbf{c})) \leq r$ can always be detected and corrected.

Proof. (a) Let $\mathbf{c} \in C$ and we consider the ball $B_{r}(\mathbf{c})$. Then, since $\delta(\mathbf{x}, \mathbf{y})>r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, we have that $B_{r}(\mathbf{c}) \cap C=\{\mathbf{c}\}$: indeed, all other elements of C are further away from the center \mathbf{c} of the ball. It means that for any transmission with number of errors between 1 and r we should have that $\tau(\mathbf{c}) \neq \mathbf{c}$, and $\tau(\mathbf{c}) \in B_{r}(\mathbf{c})$. We obtain that $\tau(\mathbf{c}) \notin C$. This means that such an error could be detected.
(b) As we have seen, the condition $\delta(\mathbf{x}, \mathbf{y})>2 r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$ implies that for any transmission with number of errors between 1 and r we should have that $\tau(\mathbf{c}) \neq \mathbf{c}$, and $\tau(\mathbf{c}) \in B_{r}(\mathbf{c})$. On the other hand, for every $\mathbf{x} \in C$ such that $\mathbf{x} \neq \mathbf{c}, 2 r<\delta(\mathbf{c}, \mathbf{x}) \leq \delta(\mathbf{c}, \tau(\mathbf{c}))+\delta(\tau(\mathbf{c}), \mathbf{x})$. By assumption, $\delta(\mathbf{c}, \tau(\mathbf{c}))<r$. Then it means that $\delta(\tau(\mathbf{c}), \mathbf{x})>r$, or that $\tau(\mathbf{c}) \notin B_{r}(\mathbf{x})$. Since $\tau(\mathbf{c}) \in B_{r}(\mathbf{c})$, it means that \mathbf{c} is the only element of C which could be transmitted to $\tau(\mathbf{c})$.

