Summary on Lecture 17, May 6th, 2016

Introduction to coding theory.

Here we describe basics of coding theory. Assume we have to transmit a binary signal, i.e. a string \mathbf{w} of 0's and 1's, say $\mathbf{w} = 011010110$. We have to expect that there is a "noise" during this submittion, and we have to use some techniques to correct an error.

Example. Assume we send a string $\mathbf{w} = 011010110$. We can identify \mathbf{w} with the element (0, 1, 1, 0, 1, 0, 1, 1, 0) of the cartisian product

$$\mathbf{Z}_2^9 = \underbrace{\mathbf{Z}_2 \times \cdots \times \mathbf{Z}_2}_{\mathbf{q}}.$$

Suppose the message we received is $\mathbf{v} = (0, 1, 1, 0, 1, 1, 1, 0, 0) \in \mathbf{Z}_2^9$ which is not the message we sent. This give us the error $\mathbf{e} = (0, 0, 0, 0, 0, 1, 0, 1, 0)$, where the entry 1 indicates the error during the transmission. Now we can write the identity in \mathbf{Z}_2^9 :

$$\mathbf{w} - \mathbf{v} = \mathbf{e}$$
 or $\mathbf{v} + \mathbf{w} = \mathbf{e}$.

Now we assume that for each digit of \mathbf{w} there is probability p of incorrect transmission. We also assume that the transmission of any signal does not in any way depend on the transmission of prior signals. Then there is a probability

$$(1-p)^5 p(1-p)p(1-p) = (1-p)^7 p^2$$

of having the error e = (0, 0, 0, 0, 0, 1, 0, 1, 0).

Now we describe a general construction. Let $\mathbf{w} = w_1 \dots w_n \in \{0,1\}^n$ be a message to be transmitted. We identify \mathbf{w} with an element in \mathbf{Z}_2^n , i.e., we write

$$\mathbf{w} = (w_1, \dots, w_n) \in \mathbf{Z}_2^n$$
.

Then we denote by $\mathbf{v} = (v_1, \dots, v_n)$ the received message, and by $\mathbf{e} = (e_1, \dots, e_n)$ the error, i.e., $\mathbf{e} = \mathbf{w} + \mathbf{v}$. Here is our general observation:

Lemma 1. Assume that for each digit of \mathbf{w} there is probability p of incorrect transmission, and that the transmission of any signal does not in any way depend on the transmission of prior signals.

- (1) The probability that the error $\mathbf{e} \in \mathbf{Z}_2^n$ has a particular pattern with k 1's and (n-k) 0', is $p^k(1-p)^{n-k}$.
- (2) The probability that the error $\mathbf{e} \in \mathbf{Z}_2^n$ has exactly k 1's and (n-k) 0', is $\binom{n}{k} p^k (1-p)^{n-k}$.

We notice that the probability to have an error in two entries is much smaller than to have an error in one entry. Say, if $p = 0.01 = 10^{-2}$, the probability to have two errors is

$$\binom{n}{2}10^{-4}(1-10^{-2})^{n-2}\cong \binom{n}{2}10^{-4}\left(1-(n-2)10^{-2(n-2)}\right)\cong \binom{n}{2}10^{-4}=\frac{n(n-1)}{2}10^{-4},$$

which much smaller comparing with the probability to have just one error $n \cdot 10^{-2}$.

Improvement to Accuracy. Let m be the length of the signals to be transmitted. The idea is to increase the length from m to n >> m as follows. First, we choose an encoding function $\alpha: \mathbf{Z}_2^m \to \mathbf{Z}_2^n$. The set $C = \alpha(\mathbf{Z}_2^m) \subset \mathbf{Z}_2^n$ is called the code, and its elements are called the code words.

Example 1. Let $\alpha: \mathbf{Z}_2^n \to \mathbf{Z}_2^{n+1}$ is given as

$$\alpha: (w_1,\ldots,w_n) \mapsto (w_1,\ldots,w_n,w_1+\cdots+w_n)$$

Let q be a number of 1's in $\mathbf{w} = (w_1, \dots, w_n)$. Then last digit of $\alpha(\mathbf{w})$ is $q \mod 2$. It means that $\alpha(\mathbf{w}) \in \mathbf{Z}_2^{n+1}$ has always even number of 1's.

Now we make a transmission $\tau: \mathbf{Z}_2^{n+1} \to \mathbf{Z}_2^{n+1}$, and let $\mathbf{v} = \tau(\mathbf{w})$. Assume that the transmission τ went with an error in one entry. Then the message $\mathbf{v} = \tau(\mathbf{w})$ has odd number of 1's; thus we know for sure that there is an error in the transmission. Here we can detect the error, but we have no means to correct it.

Example 2. Let $\alpha: \mathbf{Z}_2^n \to \mathbf{Z}_2^{3n}$ is given as

$$\alpha: (w_1, \dots, w_n) \mapsto (w_1, \dots, w_n, w_1, \dots, w_n, w_1, \dots, w_n),$$

i.e. we just repeat w two more times. Now we make a transmission $\tau: \mathbf{Z}_2^{3n} \to \mathbf{Z}_2^{3n}$, and let

$$\mathbf{v} = \tau(\mathbf{w}) = (v_1, \dots, v_n, v'_1, \dots, v'_n, v''_1, \dots, v''_n).$$

Then we use the following decoding function $\sigma: \mathbf{Z}_2^{3n} \to \mathbf{Z}_2^n$:

$$(v_1,\ldots,v_n,v_1',\ldots,v_n',v_1'',\ldots,v_n'')\mapsto (u_1,\ldots,u_n),$$

where u_j is equal to the majority of the elements v_j , v'_j , v''_j . Clearly if at most one entry among v_j , v'_j , v''_j is different from w_j , then we still have $u_j = w_j$. Thus we correct the message if there is an error in just one entry.

The Hamming metric. Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{Z}_2^n$. Then we define a weight $\omega(\mathbf{x})$ as a number of non-zero entries x_i .

Definition 1. Let $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{Z}_2^n$ and $\mathbf{y} = (y_1, \dots, y_n) \in \mathbf{Z}_2^n$. Then the distance between \mathbf{x} and \mathbf{y} is given as

$$\delta(\mathbf{x}, \mathbf{y}) = \left| \left\{ j \mid x_j \neq y_j \right\} \right|,$$

i.e., $\delta(\mathbf{x}, \mathbf{y})$ is the number of corresponding entries of \mathbf{x} and \mathbf{y} which are different.

Lemma 1. Let $\mathbf{x}, \mathbf{y} \in \mathbf{Z}_2^n$. Then $\delta(\mathbf{x}, \mathbf{y}) = \omega(\mathbf{x} + \mathbf{y})$.

Proof. We note that $x_j \neq y_j$ if and only if $x_j + y_j = 1 \mod 2$.

Lemma 2. Let $\mathbf{x}, \mathbf{y} \in \mathbf{Z}_2^n$. Then $\omega(\mathbf{x} + \mathbf{y}) \leq \omega(\mathbf{x}) + \omega(\mathbf{y})$.

Proof. Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$, and $\mathbf{z} = \mathbf{x} + \mathbf{y} = (z_1, \dots, z_n)$. Then it is easy to check that $z_j \leq x_j + y_j \mod 2$. Indeed, if at least one of x_j , y_j is not equal to one, then $z_j = x_j + y_j$. If $x_j = 1$ and $y_j = 1$, then $z_j = 0 \mod 2$. It means that the number of 1's in \mathbf{z} is less or equal to the sum of number of 1's of \mathbf{x} and \mathbf{y} .

Theorem 1. The distance function $\delta: \mathbb{Z}_2^n \times \mathbb{Z}_2^n \to \mathbb{Z}_{\geq 0}$ satisfies the following properties:

- (1) $\delta(\mathbf{x}, \mathbf{y}) \geq 0$;
- (2) $\delta(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x} = \mathbf{y}$;
- (3) $\delta(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{y}, \mathbf{x});$
- (4) $\delta(\mathbf{x}, \mathbf{z}) \leq \delta(\mathbf{x}, \mathbf{y}) + \delta(\mathbf{y}, \mathbf{z})$.

Exercises. Prove Theorem 1.

The pair (\mathbf{Z}_2^n, δ) is an example of a *metric space*.

Definition. Let $r \ge 1$ be a positive integer, and $\mathbf{x} \in \mathbf{Z}_2^n$. Then the set $B_r(\mathbf{x}) = \{ \mathbf{y} \mid \delta(\mathbf{x}, \mathbf{y}) \le r \}$ is called a closed ball of radius r.

Theorem 2. Let $m, n \in \mathbf{Z}_+$, and m < n. Assume $\alpha : \mathbf{Z}_2^m \to \mathbf{Z}_2^n$ be an encoding function, such that $C = \alpha(\mathbf{Z}_2^m) \subset \mathbf{Z}_2^n$.

- (a) If $\delta(\mathbf{x}, \mathbf{y}) > r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, then a transmission τ with $\delta(\mathbf{c}, \tau(\mathbf{c})) \leq r$ can always be detected, i.e., a transmission with at most r errors can always be detected.
- (b) If $\delta(\mathbf{x}, \mathbf{y}) > 2r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, then a transmission τ with $\delta(\mathbf{c}, \tau(\mathbf{c})) \leq r$ can always be detected and corrected.

Proof. (a) Let $\mathbf{c} \in C$ and we consider the ball $B_r(\mathbf{c})$. Then, since $\delta(\mathbf{x}, \mathbf{y}) > r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$, we have that $B_r(\mathbf{c}) \cap C = \{\mathbf{c}\}$: indeed, all other elements of C are further away from the center \mathbf{c} of the ball. It means that for any transmission with number of errors between 1 and r we should have that $\tau(\mathbf{c}) \neq \mathbf{c}$, and $\tau(\mathbf{c}) \in B_r(\mathbf{c})$. We obtain that $\tau(\mathbf{c}) \notin C$. This means that such an error could be detected.

(b) As we have seen, the condition $\delta(\mathbf{x}, \mathbf{y}) > 2r$ for all strings in C with $\mathbf{x} \neq \mathbf{y}$ implies that for any transmission with number of errors between 1 and r we should have that $\tau(\mathbf{c}) \neq \mathbf{c}$, and $\tau(\mathbf{c}) \in B_r(\mathbf{c})$. On the other hand, for every $\mathbf{x} \in C$ such that $\mathbf{x} \neq \mathbf{c}$, $2r < \delta(\mathbf{c}, \mathbf{x}) \le \delta(\mathbf{c}, \tau(\mathbf{c})) + \delta(\tau(\mathbf{c}), \mathbf{x})$. By assumption, $\delta(\mathbf{c}, \tau(\mathbf{c})) < r$. Then it means that $\delta(\tau(\mathbf{c}), \mathbf{x}) > r$, or that $\tau(\mathbf{c}) \notin B_r(\mathbf{x})$. Since $\tau(\mathbf{c}) \in B_r(\mathbf{c})$, it means that \mathbf{c} is the only element of C which could be transmitted to $\tau(\mathbf{c})$.