
Math 233, Spring 2016 Boris Botvinnik

Summary on Lecture 16, May 4th, 2016

Powers and roots mod p1p2 .

Last time we proved the following result:
Lemma 1. Let p be a prime, and e be such that gcd(e, p−1) = 1 , giving us d be such that de ≡ 1 mod (p−1) .
Then the congruence xe ≡ c mod p has a unique solution x = cd mod p .

Now let p1 , p2 be distinct primes. We will analyze how to solve the equation xe ≡ c mod p1p2 . Last time we
proved the following:

Theorem 2. Let p1 and p2 be distinct primes, and let d = gcd(p1 − 1, p2 − 1) . Assume an interger a is such

that gcd(a, p1p2) = 1 . Then a
(p1−1)(p2−1)

d ≡ 1 mod p1p2 .

Here is the resut we need:

Lemma 2. Let p1 , p2 be distinct primes, and let e ≥ 1 be an integer satisfying gcd(e, (p1−1)(p2−1)) = 1, and
let d be such that d · e ≡ 1 mod (p1 − 1)(p2 − 1). Then the congruence xe ≡ c mod p1p2 has a unique solution
x = cd mod p1p2 .

Proof. For simplicity, we assume that gcd(c, p1p2) = 1. Then since gcd(e, (p1 − 1)(p2 − 1)) = 1, we find d such
that d · e = 1 + k(p1 − 1)(p2 − 1). Now we check that cd is a solution of the congruence xe ≡ c mod p1p2 :

(cd)e = cde

= c1+k(p1−1)(p2−1)

= c · (c(p1−1)(p2−1))k

≡ c · 1k mod (p1p2)
≡ c mod (p1p2)

Now we check that such a solution is unique. Assume x = u is a solution of the congruence xe ≡ c mod p1p2 .
Then that cd is a solution of the congruence xe ≡ c mod p1p2 :

u = ude−k(p1−1)(p2−1)

= (ue)d(u(p1−1)(p2−1))−k

= cd · 1−k mod (p1p2)
≡ cd mod (p1p2)

The case when gcd(c, p1p2) > 1 will be given as exercise. �

Example. Let p1 = 229, p2 = 281, N = p1p2 = 229 · 281 = 64, 349. We solve the congruence

x17389 ≡ 43, 947 mod 64, 349

First, we have to solve the congruence

d · 17, 389 ≡ 1 mod 63, 840,

where 63, 840 = (p1 − 1)(p2 − 1) = 228 · 280. We find d ≡ 53, 509 mod 63, 840. Then Lemma 2 gives us the
solution

x ≡ 43, 94753,509 ≡ 14, 458 mod 64, 349.
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The RSA public key cryptosystem

Now we can describe the RSA public key cryptosystem. The term RSA is named after its inventors Ron Rivest
(MIT), Adi Shamir (Weizmann Institute, Israel), Leonard Adleman (MIT). They first described this algorithm
in 1977 (when all of them were in their twenties).

Assume that Bob and Alice have to exchange a sensitive information over insecure communication line. Here
what they do

• Bob chooses p1 , p2 be two large primes, N = p1 · p2 and an integer e such that gcd(e, (p1 − 1)(p2 − 1)) = 1.
The pair (N, e) is a public key which is publicly available, in particular to an unfriendly person Eve.

• Now Alice would like to send a message, an integer m to Bob. She encrypts m be computing the quantity
c ≡ me mod N . The quantity c is her ciphertext which she sends to Bob over an open communication line.

• Then Bob receives the message and easily decodes it by solving the congruence xe ≡ c mod N since he knows
the factorization N = p1p2 and thus he can find d such that d · e ≡ 1 mod (p1 − 1)(p2 − 1), and then just
compute x = cd mod N .

• On the other hand, Eve does not know how to decode the message since it is very difficult task to factor given
integer N into a product of two large primes.

Remark. As we have seen, Bob’s public key includes the number N = p1p2 , which is a product of two secret
primes p1 and p2 . Clearly if Eve knows the value of (p1 − 1)(p2 − 1), then she can solve the congruence xe ≡ c
mod N , and thus can decrypt messages sent to Bob. Expanding (p1 − 1)(p2 − 1) gives

(p1 − 1)(p2 − 1) = p1p2 − p1 − p2 + 1 = N − (p1 + p2) + 1.

Since Bob has published the value of N , so Eve already knows N . Thus if Eve can determine the value of the
sum p1+p2 , then the above identity gives her the value of (p1−1)(p2−1), which enables her to decrypt messages.


