Math 233, Spring 2016 Boris Botvinnik

Summary on Lecture 15, May 2nd, 2016

The Chinese remainder theorem, again

Here is the main result:

Theorem. (Chinese Remainder Theorem) Let m_1, \ldots, m_k be a collection of relatively prime numbers, and a_1, \ldots, a_k be arbitrary integers. Then the system of congruences

(1)
$$\begin{cases} x \equiv a_1 \mod m_1 \\ \cdots \\ x \equiv a_k \mod m_k \end{cases}$$

has a solution x = c. If x = c and x = c' are both solutions of (1), then $c \equiv c' \mod m_1 \cdots m_k$.

Proof. Assume that we already found a solution $x = c_i$ of the congruences

(2)
$$\begin{cases} x \equiv a_1 \mod m_1 \\ \dots \\ x \equiv a_i \mod m_i \end{cases}$$

where i < k. Then we look for a solution of the conguence $x \equiv a_{i+1} \mod m_{i+1}$ of the form $x = c_i + m_1 \cdots m_i \cdot y$. Then we have to solve the conguence

$$c_i + m_1 \cdots m_i \cdot y \equiv a_{i+1} \mod m_{i+1}$$

Since $gcd(m_{i+1}, m_1 \cdots m_i) = 1$, we can find ℓ such that

$$\ell \cdot (m_1 \cdots m_i) \equiv 1 \mod m_{i+1}$$

We have that

$$\ell \cdot c_i + \ell \cdot (m_1 \cdots m_i) \cdot y \equiv \ell \cdot a_{i+1}$$
 or $y \equiv \ell \cdot (a_{i+1} - c_i)$.

Then we find x as $x \equiv c_i + m_1 \cdots m_i \cdot y \mod m_{i+1}$.

Example. We solve the system of congruences:

$$\begin{cases} x \equiv 2 \mod 3 \\ x \equiv 3 \mod 7 \\ x \equiv 4 \mod 16 \end{cases}$$

We solve $x \equiv 2 \mod 3$: x = 2 + 3y. We write $2 + 3y \equiv 3 \mod 7$. We have the equation $3y \equiv 1 \mod 7$. Since $3^{-1} = 5 \mod 7$, we have:

$$5 \cdot 3 \cdot y \equiv 5 \mod 7$$
, or $y \equiv 5 \mod 7$.

We have that y = 5 + 7z. We obtain x = 2 + 3(5 + 7z) = 17 + 21z. Then we write $17 + 21z \equiv 4 \mod 16$. This is the same as $1 + 5z \equiv 4 \mod 16$, or we get the congruence

$$5z \equiv 3 \mod 16$$
.

We find that $5^{-1} = 13 \mod 16$ (indeed, $5 \cdot 13 = 65 \equiv 1 \mod 16$). Then we obtain:

$$z \equiv 13 \cdot 3 \equiv 7 \mod 16$$
, or $z = 7 + 16w$.

We obtain:

$$x = 17 + 21z = 17 + 21 \cdot (7 + 16w) = 17 + 147 + 3 \cdot 7 \cdot 16w = 164 + 3 \cdot 7 \cdot 16w$$

where w is an arbitrary interger. A minimal positive solution is x = 164.

Generalization of the Fermat's Little Theorem.

According to the Fermat's Little Theorem, for given prime p and any integer a, $a^{p-1} \equiv 1$ unless a is divisible by p. We would like to investigate what happens with the powers mod $n = p_1 \cdot p_2$ (product of two primes).

Example. Let $n = 15 = 3 \cdot 5$. Then we have

$$a^4 \equiv 1 \mod 15$$
 if $a = 1, 2, 4, 7, 8, 11, 13, 14,
 $a^4 \not\equiv 1 \mod 15$ if $a = 3, 5, 6, 9, 10, 12$.$

Check it. Why do we have $a^4 \not\equiv 1 \mod 15$ for particular values a = 3, 5, 6, 9, 10, 12? We can notice that all these numbers have common factors with 15. This suggest that some version of the Fermat's Little Theorem should hold for a product of two primes. Here is the result which plays a fundamental role for the RSA public key cryptosystem. This theorem is also known as the Euler formula for the product of two primes.

Theorem 2. Let p_1 and p_2 be distinct primes, and let $d = \gcd(p_1 - 1, p_2 - 1)$. Assume an interger a is such that $\gcd(a, p_1 p_2) = 1$. Then $a^{\frac{(p_1 - 1)(p_2 - 1)}{d}} \equiv 1 \mod p_1 p_2$.

Proof. By assumption, d has to divide $p_2 - 1$, and $gcd(a, p_1) = 1$. In particular, we have that $a^{(p_1 - 1)} \equiv 1 \mod p_1$ by the Fermat's Little Theorem. Then we have:

$$a^{\frac{(p_1-1)(p_2-1)}{d}} = (a^{(p_1-1)})^{\frac{(p_2-1)}{d}}$$

$$\equiv 1^{\frac{(p_2-1)}{d}} \mod p_1$$

$$\equiv 1 \mod p_1.$$

Similarly we prove that $a^{\frac{(p_1-1)(p_2-1)}{d}} \equiv 1 \mod p_2$. It means that the difference

$$a^{\frac{(p_1-1)(p_2-1)}{d}} - 1$$

is divisible by both p_1 and p_2 . Hence it divisible by p_1p_2 , or $a^{\frac{(p_1-1)(p_2-1)}{d}}-1\equiv 0 \mod p_1p_2$.

Now we are almost ready to describe the RSA public key cryptosystem. Two more theoretical exercises to go.

First, let us try to solve an equation of the form $x^e \equiv c \mod p$, where x is an unknown, e, c are known integers, and p is a prime. We recall that if e is such number that $\gcd(e, p - 1) = 1$, then there exists d such that

$$de \equiv 1 \mod p - 1.$$

Lemma 1. Let p be a prime, and e be such that gcd(e, p-1) = 1, giving us d be such that $de \equiv 1 \mod (p-1)$. Then the congruence $x^e \equiv c \mod p$ has a unique solution $x = c^d \mod p$.

Proof. First, assume that $c \equiv 0 \mod p$. Then $x \equiv 0 \mod p$ is the unique solution. Assume that $c \not\equiv 0 \mod p$. The congruence $de \equiv 1 \mod (p-1)$ means that there exists k such that de = 1 + k(p-1). Then we have

$$(c^{d})^{e} = c^{de}$$

$$= c^{1+k(p-1)}$$

$$= c \cdot (c^{(p-1)})^{k}$$

$$\equiv c \cdot 1^{k} \mod p$$

$$\equiv c \mod p$$

We see that $x = c^d$ solves the conguence $x^e \equiv c$.

Exercise. Prove that the solution $x = c^d \mod p$ is unique.

Example. We solve $x^{1583} \equiv 4714 \mod 7919$, where 7919 is prime. For this, we solve the congruence $d \cdot 1583 \equiv 1 \mod 7918$. We find $d \equiv 5277 \mod 7918$. Then we use Lemma 1 to find $x \equiv 4714^{5277} \mod 7919$. We find $x \equiv 6059 \mod 7919$.