
Math 233, Spring 2016 Boris Botvinnik

Summary on Lecture 14, April 28th, 2016

More on the Fermat’s Little Theorem.

Last time we proved the Fermat’s Little Theorem:

Theorem 1. Let p be a prime number. Then

ap−1 ≡
{

1 mod p if a 6= 0 mod p
0 mod p if a = 0 mod p

We notice that this theorem and fast powering algorithm provide us with new way to compute inverses mod p .
We can see that

a−1 ≡ ap−2 mod p.

Indeed, we multiply a · ap−2 = ap−1 ≡ 1 mod p .

Example. We can compute 7814−1 mod 17449 in two ways. First we use the fast powering algorithm to get:

7814−1 ≡ 781417447 ≡ 1284 mod 17449.

Secondly, we can use the Euclidian algorithm to solve the equation

7814 · t + 17449 · s = 1.

We get t = 1284, s = −575. The result is the same: 7814−1 ≡ 1284 mod 17449.

Example. Now we’ll see that the Fermat’s Little Theorem can help us to decide whether a given integer is a
prime or not. Let n = 15485207. Assume that n = 15485207 is a prime. Then we can compute 2n−1 = 215485206

mod 15485207. We get:
215485206 ≡ 4136685 mod 15485207.

Thus n is not a prime since 2n−1 6≡ 1 mod n . We did prove that 15485207 is not a prime, however, we do not
know any of its factors! Actually, 15485207 is a product of two primes: 15485207 = 3853 · 4019.

Let us think again about the statement of the Fermat’s Little Theorem: it gives us that ap−1 ≡ 1 mod p if a
is not divisible by p . However, for given a there could be an integer k < p − 1 such that ak ≡ 1 mod p . We
choose a minimal k such ak ≡ 1 mod p and call such k the order of a mod p . We would like to examine this:

Lemma 1. Let p be a prime and a be an integer not divisible by p , and k be the order of a mod p . Then k
divides (p− 1).

Proof. Let k be a minimal positive integer such that ak ≡ 1 mod p . We have that an ≡ 1 mod p for n = p−1.
We divide n by k :

n = k · d + r, 0 ≤ r < k.

Then we have:
1 ≡ an ≡ ak·d+r ≡ ak·d · ar ≡ (ak)d · ar ≡ 1 · ar ≡ ar.

Thus ar ≡ 1 mod p . However, r < k , and k is a minimal positive integer such that ak ≡ 1 mod p . This means
that r = 0, i.e. k divides n = p− 1. �

Example. We look at powers of 2 mod 11:

20 ≡ 1, 21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 5, 25 ≡ 10, 26 ≡ 9, 27 ≡ 7, 28 ≡ 3, 29 ≡ 6, 210 ≡ 1.

In this case, 10 = 11− 1 is the order of 2 mod 11.

We look at the powers of 2 mod 17:

20 ≡ 1, 21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 16, 25 ≡ 15, 26 ≡ 13, 27 ≡ 9, 28 ≡ 1, . . . .

Here we see that 8 is the order of 2 mod 17.
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The Chinese remainder theorem.

Here is a problem studied in China in late third century:

We have a number of things, but we do not know exactly how many. If we count them by threes, we have two left
over. If we count them by fives, we have three left over. If we count them by sevens, we have two left over. How
many things are there?

We translate this into modern mathematical lenguage. Let x be the “number of things”. Then we have two
equations:

x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 2 mod 7.

The first equation gives us that x = 3y + 2 for some integer y . Then we conclude from the second equation that
x = 3y + 2 ≡ 3 mod 5. We obtain the equation

3y ≡ 1 mod 5

Since 3−1 = 2 mod 5, we obtain that y ≡ 2 mod 5, i.e. y = 5z+2, and then we obtain that x = 3y+2 = 15z+8.
Then we should find z such that 15z + 8 ≡ 2 mod 7. This means that

14z + z + 1 + 7 ≡ 2 mod 7, or z ≡ 1 mod 7.

We obtain z = 1 + 7w , and then x = 15z + 8 = 15(1 + 7w) + 8 = 23 + 3 · 5 · 7w , where w is an integer. This
gives all solutions of the ancient problem. The minimal positive solution is x = 23.

Exercise. Solve the system of congruences {
x ≡ 1 mod 5
x ≡ 9 mod 11

Theorem. (Chinese Remainder Theorem) Let m1, . . . ,mk be a collection of relatively prime numbers, and
a1, . . . , ak be arbitrary integers. Then the system of congruences

(1)

 x ≡ a1 mod m1

· · · · · · · · · · · ·
x ≡ ak mod mk

has a solution x = c . If x = c and x = c′ are both solutions of (1), then c ≡ c′ mod m1 · · ·mk .

Proof. Assume that we already found a solution x = ci of the congruences

(2)

 x ≡ a1 mod m1

· · · · · · · · · · · ·
x ≡ ai mod mi

where i < k . Then we look for a solution of the conguence x ≡ ai+1 mod mi+1 of the form x = ci +m1 · · ·mi ·y .
Then we have to solve the conguence

ci + m1 · · ·mi · y ≡ ai+1 mod mi+1

Since gcd(mi+1,m1 · · ·mi) = 1, we can find ` such that

` · (m1 · · ·mi) ≡ 1 mod mi+1

We have that

` · ci + ` · (m1 · · ·mi) · y ≡ ` · ai+1 or y ≡ ` · (ai+1 − ci).

Then we find x as x ≡ ci + m1 · · ·mi · y mod mi+1 . �

Example. We solve the system of congruences: x ≡ 2 mod 3
x ≡ 3 mod 7
x ≡ 4 mod 16

We solve x ≡ 2 mod 3: x = 2 + 3y . We write 2 + 3y ≡ 3 mod 7. We have the equation 3y ≡ 1 mod 7. Since
3−1 = 5 mod 7, we have:

5 · 3 · y ≡ 5 mod 7, or y ≡ 5 mod 7.
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We have that y = 5 + 7z . We obtain x = 2 + 3(5 + 7z) = 17 + 21z . Then we write 17 + 21z ≡ 4 mod 16. This
is the same as 1 + 5z ≡ 4 mod 16, or we get the congruence

5z ≡ 3 mod 16.

We find that 5−1 = 13 mod 16 (indeed, 5 · 13 = 65 ≡ 1 mod 16). Then we obtain:

z ≡ 13 · 3 ≡ 7 mod 16, or z = 7 + 16w.

We obtain:
x = 17 + 21z = 17 + 21 · (7 + 16w) = 17 + 147 + 3 · 7 · 16w = 164 + 3 · 7 · 16w,

where w is an arbitrary interger. A minimal positive solution is x = 164.


