Summary on Lecture 13, April 27th, 2016

Integers mod n and simplest ciphers.

Here is the Ceasar cipher. We numerate the alphabet

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Now we choose a key $0 \leq \kappa \leq 25$. Then we define a function $E: \mathbf{Z} / 26 \rightarrow \mathbf{Z} / 26$ as $E: \theta \mapsto(\theta+\kappa) \bmod 26$. Say, if $\kappa=7$, we obtain the following encryption for our cipher:

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z	a	b	c	d	e	f	g

Thus we can enrypt the famous Ceaser's message: "I came, I saw, I conquered":

i	c	a	m	e	i	s	a	w	i	c	o	n	q	u	e	r	e	d
p	j	h	t	l	p	z	h	d	p	j	v	u	x	b	l	y	l	k

The message now looks like that "pjhtlpzhdpjvuxblylk". To decrypt the message, we should use the function $D: \theta \mapsto(\theta-\kappa) \bmod 26$.

There is an obvious modification: let α be an integer $1 \leq \alpha \leq 25$ such that $\operatorname{gcd}(\alpha, 26)=1$. Then new encryption function E is given as $E: \theta \mapsto(\alpha \theta+\kappa) \bmod 26$. The corresponding decryption function is given as $D(\theta)=\alpha^{-1} \theta-\alpha^{-1} \kappa$.
Example. Let $\kappa=7$ and $\alpha=15$, and $E(\theta)=15 \theta+7$. Then we can find that $\alpha^{-1}=7 \bmod 26$. Then the decryption function is $D(\theta)=7 \theta-7^{2}=7 \theta-49=7 \theta+3 \bmod 26$.
Exercise. Encrypt and decrypt the message "I came, I saw, I conquered".

Powers of numbers $\bmod n$

First, we consider a simple example: $\mathbf{Z} / 7$. We list the powers of non-zero elements in $\mathbf{Z} / 7$:

$$
\begin{array}{llllll}
1^{2}=1 & 1^{2}=1 & 1^{3}=1 & 1^{4}=1 & 1^{5}=1 & 1^{6}=1 \\
2^{1}=2 & 2^{2}=4 & 2^{3}=1 & 2^{4}=2 & 2^{5}=4 & 2^{6}=1 \\
3^{1}=3 & 3^{2}=2 & 3^{3}=6 & 3^{4}=4 & 3^{5}=5 & 3^{6}=1 \\
4^{1}=4 & 4^{2}=2 & 4^{3}=1 & 4^{4}=4 & 4^{5}=2 & 4^{6}=1 \\
5^{1}=5 & 5^{2}=4 & 5^{3}=6 & 5^{4}=2 & 5^{5}=3 & 5^{6}=1 \\
6^{1}=6 & 6^{2}=1 & 6^{3}=6 & 6^{4}=1 & 6^{5}=6 & 6^{6}=1
\end{array}
$$

We notice an intersting pattern: $a^{6}=1 \bmod 7$ for all $a \in \mathbf{Z} / 7, a \neq 0$. The following is a remarkable general result:

Theorem 1. (Fermat's Little Theorem) Let p be a prime number. Then

$$
a^{p-1} \equiv\left\{\begin{array}{lll}
1 & \bmod p & \text { if } a \neq 0 \bmod p \\
0 & \bmod p & \text { if } a=0 \bmod p
\end{array}\right.
$$

Proof. If $a=0 \bmod p$, then any power a^{k} is zero $\bmod p$. We consider the case when $a \neq 0 \bmod p$. We consider the numbers

$$
a, \quad 2 a, \quad 3 a, \cdots \quad(p-1) a \bmod p
$$

There are $(p-1)$ numbers here. We notice that they all are different. Indeed, let $i \cdot a=j \cdot a \bmod p$, where $1 \leq i, j \leq p-1$. Then $(i-j) a=0 \bmod p$. Thus the product $(i-j) a$ is divisible by p. Since a is not divisible by p, then $(i-j)$ is divisible by p. But $1 \leq i, j \leq p-1$, which means that the only option is that $i=j$, i.e., $i-j=0$. Now the list of $p-1$ numbers

$$
a, \quad 2 a, \quad 3 a, \quad \ldots, \quad(p-1) a \bmod p
$$

up to the order coincides with the list $1, \ldots,(p-1)$. Then we have

$$
a \cdot 2 a \cdot 3 a \cdots(p-1) a=1 \cdot 2 \cdots(p-1) \bmod p
$$

The right-hand side is equal to $a^{p-1}(p-1)$! We obtain:

$$
a^{p-1}(p-1)!=(p-1)!\quad \bmod p
$$

Since $(p-1)!\neq 0 \bmod p$, there exists an integer q such that $(p-1)!\cdot q=1 \bmod p$. We multiply both sides of the equation $a^{p-1}(p-1)!=(p-1)$! by q to get

$$
a^{p-1}=1 \quad \bmod p
$$

This proves Theorem 1.
Exercise. The number $p=15485863$ is prime. Thus $2016^{15485862} \equiv 1 \bmod 15485863$. Give an estimate on how many digits does the number $20166^{15485862}$ have?

