Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 13, April 27th, 2016

Integers mod n and simplest ciphers.

Here is the **Ceasar cipher**. We numerate the alphabet

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

Now we choose a **key** $0 \le \kappa \le 25$. Then we define a function $E : \mathbb{Z}/26 \to \mathbb{Z}/26$ as $E : \theta \mapsto (\theta + \kappa) \mod 26$. Say, if $\kappa = 7$, we obtain the following encryption for our cipher:

a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	p	q	r	s	t	u	v	w	x	y	z
h	i	j	k	l	m	n	0	p	q	r	s	t	u	v	w	\boldsymbol{x}	y	z	a	b	c	d	e	f	\boldsymbol{g}

Thus we can enrypt the famous Ceaser's message: "I came, I saw, I conquered":

i	c	a	m	e	i	s	a	w	i	c	0	n	q	u	e	r	e	d
p	j	h	t	l	p	z	h	d	p	j	v	u	\boldsymbol{x}	b	l	y	l	k

The message now looks like that "pjhtlpzhdpjvuxblylk". To decrypt the message, we should use the function $D: \theta \mapsto (\theta - \kappa) \mod 26$.

There is an obvious modification: let α be an integer $1 \leq \alpha \leq 25$ such that $\gcd(\alpha, 26) = 1$. Then new encryption function E is given as $E: \theta \mapsto (\alpha\theta + \kappa) \mod 26$. The corresponding decryption function is given as $D(\theta) = \alpha^{-1}\theta - \alpha^{-1}\kappa$.

Example. Let $\kappa = 7$ and $\alpha = 15$, and $E(\theta) = 15\theta + 7$. Then we can find that $\alpha^{-1} = 7 \mod 26$. Then the decryption function is $D(\theta) = 7\theta - 7^2 = 7\theta - 49 = 7\theta + 3 \mod 26$.

Exercise. Encrypt and decrypt the message "I came, I saw, I conquered".

Powers of numbers mod n

First, we consider a simple example: $\mathbb{Z}/7$. We list the powers of non-zero elements in $\mathbb{Z}/7$:

We notice an intersting pattern: $a^6 = 1 \mod 7$ for all $a \in \mathbb{Z}/7$, $a \neq 0$. The following is a remarkable general result:

Theorem 1. (Fermat's Little Theorem) Let p be a prime number. Then

$$a^{p-1} \equiv \left\{ \begin{array}{ll} 1 \mod p & \text{if } a \neq 0 \bmod p \\ 0 \mod p & \text{if } a = 0 \bmod p \end{array} \right.$$

Proof. If $a = 0 \mod p$, then any power a^k is zero mod p. We consider the case when $a \neq 0 \mod p$. We consider the numbers

$$a, 2a, 3a, \cdots (p-1)a \mod p$$
.

There are (p-1) numbers here. We notice that they all are different. Indeed, let $i \cdot a = j \cdot a \mod p$, where $1 \le i, j \le p-1$. Then $(i-j)a = 0 \mod p$. Thus the product (i-j)a is divisible by p. Since a is not divisible by p, then (i-j) is divisible by p. But $1 \le i, j \le p-1$, which means that the only option is that i=j, i.e., i-j=0. Now the list of p-1 numbers

$$a, 2a, 3a, \ldots, (p-1)a \mod p$$

up to the order coincides with the list $1, \ldots, (p-1)$. Then we have

$$a \cdot 2a \cdot 3a \cdots (p-1)a = 1 \cdot 2 \cdots (p-1) \mod p$$
.

The right-hand side is equal to $a^{p-1}(p-1)!$ We obtain:

$$a^{p-1}(p-1)! = (p-1)! \mod p$$

Since $(p-1)! \neq 0 \mod p$, there exists an integer q such that $(p-1)! \cdot q = 1 \mod p$. We multiply both sides of the equation $a^{p-1}(p-1)! = (p-1)!$ by q to get

$$a^{p-1} = 1 \mod p.$$

This proves Theorem 1.

Exercise. The number p=15485863 is prime. Thus $2016^{15485862} \equiv 1 \mod 15485863$. Give an estimate on how many digits does the number $2016^{15485862}$ have?