
Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 11, April 18th, 2016

Finite state machines: the minimization process

Humans are fairly good at constructing small Finite State Machines that are already minimal: one naturally
tends to avoid “useless” states. Unfortunately, this little reassuring fact does not help much. In fact, humans fail
spectacularly when the machines get large, even a few dozen states are tricky, thousands are not manageable.

In our course we will describe only first “baby steps” toward Automata Theory. If you are interested to
undertand much more, you are encouraged to take the course CIS 420/520 Automata Theory.

Let M = (S, I,O, ν, ω) be a finite state machine, where I = {x1, . . . , xt, . . .} is an input alphabet, and
O = {v1, . . . , vq, . . .} is an input alphabet.

Definition 1. We say that two states s, s′ ∈ S are 1-equivalent if ω(s, xt) = ω(s′, xt) for each input letter
xt ∈ I . We use the notation s ∼1 s

′ . Furthermore, if k > 1, we say that two states s, s′ ∈ S are k -equivalent if
ω(s, xt1 · · ·xtk) = ω(s′, xt1 · · ·xtk) for each input word xt1 · · ·xtk ∈ Ik of length k . We use the notation s ∼k s

′

for the k -equivalence.

It is easy to check that the k -equivalence of states is equivalence relation. With a little effort, one can prove the
following statements:

Lemma 1. Let k ≥ 2. Then if s ∼k s
′ , then s ∼k−1 s

′ .

Lemma 2. Let k ≥ 2. Then s ∼k+1 s
′ iff s ∼k s

′ and ν(s, x) ∼k ν(s′, x) for any input letter x ∈ I .

Exercise. Prove Lemmas 1, 2.

Example. Let M = (S, I,O, ν, ω) be a machine described at Fig.1. It is easy to show that the s1 ∼1 s2 ∼1 s3 ,
and s4 ∼1 s5 ∼1 s6 ∼1 s7 . Check it!

s1

s2

s3

s4

s5

s6

s7

(0, 1)

(1, 0)

(0, 1) (0, 0)

(1, 1) (0, 0)

(1, 1) (0, 0)

(1, 0) (1, 1)

(0, 1) (0, 0)

(1, 0) (1, 1)

Fig. 1. The machine M

At the same time, we will see in few moments that s3 ∼2 s4 , and s5 ∼2 s6 , however, the states s3 and s5 are
not 2-equivalent.

We will analyze this example further, and the goal is to find a finite state machine M ′ which will perform
exactly the same task as M , but with fewer states. In other words, we would like to minimize the machine M .

Here is the idea: we partition the set of states S into the sets of 1-equivalent states, then each set of 1-equivalent
states is partitioned to the set of 2-equivalent states and so on. In order to do that, we will use the state tables
describing the functions ν and ω .

1



2

Below on the left is the state table of the machine M :

ν ω
0 1 0 1

s1 s2 s3 1 0
s2 s4 s5 1 0
s3 s4 s5 1 0
s4 s6 s7 0 1
s5 s6 s7 0 1
s6 s2 s2 0 1
s7 s3 s3 0 1

ν ω
0 1 0 1

s1 s2 s3 1 0
s2 s4 s5 1 0
s3 s4 s5 1 0

s4 s6 s7 0 1
s5 s6 s7 0 1
s6 s2 s2 0 1
s7 s3 s3 0 1

We examine the output values of the states, and we see that two groups of states {s1, s2, s3} (red) and {s4, s5, s6, s7}
(blue) are 1-equivalent. Thus we have the partition into the equivalence classes under 1-equivalence:

S = {s1, s2, s3} ∪ {s4, s5, s6, s7}
Now we notice that

ω(s1, 11) = 00, ω(s2, 11) = 01, ω(s3, 11) = 01,

i.e. s1 is not 2-equivalent to s2 and s3 . Then the values ω(s2, xy) = ω(s3, xy) for all x, y ∈ {0, 1} . Thus
s2 ∼2 s3 , and the set {s1, s2, s3} brakes into two subsets {s1, s2, s3} = {s1} ∪ {s2, s3} of the equivalence classes
under 2-equivalence.

We examine 2-equivalence on the set {s4, s5, s6, s7} . Then we see that

ω(s4, 11) = 11, ω(s5, 11) = 11, ω(s6, 11) = 10, ω(s7, 11) = 10,

i.e. the states s4, s5 are not 2-equivalent to s6, s7 . We check further to find that s4 ∼2 s5 and s6 ∼2 s7 :

ν ω
0 1 0 1

s1 s2 s3 1 0
s2 s4 s5 1 0
s3 s4 s5 1 0

s4 s6 s7 0 1
s5 s6 s7 0 1
s6 s2 s2 0 1
s7 s3 s3 0 1

ν ω
0 1 0 1

s1 s2 s3 1 0

s2 s4 s5 1 0
s3 s4 s5 1 0

s4 s6 s7 0 1
s5 s6 s7 0 1

s6 s2 s2 0 1
s7 s3 s3 0 1

We obtain the decomposition:
S = {s1} ∪ {s2, s3} ∪ {s4, s5} ∪ {s6, s7}.

Now it is easy to check that s2 ∼k s3 , s4 ∼k s5 , and s6 ∼k s7 . We form new machine with s′1 = {s1}
s′2,3 = {s2, s3} , s′4,5 = {s4, s5} , s′6,7 = {s6, s7} . Here is new machine M ′ with just four states:

s′1 s′2,3 s′4,5 s′6,7
(0, 1) (1, 0) (0, 1) (1, 0) (0, 0) (1, 1)

(1, 1) (0, 0)

Fig. 2. The machine M ′

The above example gives an idea how to minimize a finite state machine. Please read the textbook: section 7.5
provides details on the minimization process for one more example. There several examples will be given for you
to analyze in the next homework.


