Equivalence relations and partitions: counting number of partitions.

Let A be a set. A family of subsets $\left\{A_{i}\right\}_{i \in I}, A_{i} \subseteq A$, is called a partition if

$$
A=\bigcup_{i \in I} A_{i}, \quad A_{i} \cap A_{i^{\prime}}=\emptyset \quad \text { if } i \neq i^{\prime}
$$

Let $\mathcal{R} \subset A \times A$ be an equivalence relation. For each element $x \in A$ we define a subset

$$
[x]=\{y \in A \mid(x, y) \in \mathcal{R}\}
$$

We notice that either $[x]=\left[x^{\prime}\right]$ or $[x] \cap\left[x^{\prime}\right]=\emptyset$. Indeed, assume that $[x] \cap\left[x^{\prime}\right] \neq \emptyset$, and $z \in[x] \cap\left[x^{\prime}\right]$. Then $(x, z) \in \mathcal{R}$ and $\left(x^{\prime}, z\right) \in \mathcal{R}$, and this implies that $\left(x, x^{\prime}\right) \in \mathcal{R}$, and thus $[x]=\left[x^{\prime}\right]$. We obtain that the family of sets $\{[x]\}$ is a partition of A.

Now let $\left\{A_{i}\right\}_{i \in I}$ be a partition of A. Then we define a relation $\mathcal{R} \subset A \times A$ as follows:

$$
\left(x, x^{\prime}\right) \in \mathcal{R} \text { iff there exists } \quad i \in I \text { such that } \quad x, x^{\prime} \in A_{i} .
$$

It is easy to check that $\mathcal{R} \subset A \times A$ is an equivalence relation.
Theorem 1. Let A be a set. Then there is one-to-one correspondence between equivalence relations on A and partitions of A.

Now we would like to count all possible partitions of a finite set $A=\left\{a_{1}, \ldots, a_{m}\right\}$. We'll say that a partition $A=\bigcup_{i=1}^{k} A_{i}$ has a size k. Clearly, $1 \leq k \leq m$. We fix such k and count how many partitions of size k are there.

To get started, we can count how many onto maps are there $f: A \rightarrow B$, where $B=\left\{b_{1}, \ldots, b_{k}\right\}$. Then we can think of b_{i} as a box to collect elements for A_{i}, thus we should forget the order of those boxes.

We denote by S the set of all maps $f: A \rightarrow B$. Since $|A|=m,|B|=k$, we conclude that $|S|=k^{m}$. Now for each $i=1,2, \ldots, k$, we denote by S_{i} the following set of maps:

$$
S_{i}=\left\{f: B \rightarrow A \mid b_{i} \notin f(A)\right\}
$$

Then it is clear that $\left|S_{i}\right|=(k-1)^{m}$. Then we identify the set of all onto maps $f: A \rightarrow B$ with the set

$$
S \backslash\left(S_{1} \cup \cdots \cup S_{k}\right)
$$

By using the inclusion-exclusion principle, we obtain

$$
\left|S \backslash\left(S_{1} \cup \cdots \cup S_{k}\right)\right|=\sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{m}
$$

onto functions are there $f: A \rightarrow B$. We divide by k ! to obtain the Stirling number

$$
S(m, k)=\frac{1}{k!} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{m}
$$

Now we sum up partitions of A of all sizes. We obtain that there are

$$
\sum_{k=1}^{m} S(m, k)=\sum_{k=1}^{m}\left(\frac{1}{k!} \sum_{i=0}^{k-1}(-1)^{i}\binom{k}{i}(k-i)^{m}\right)
$$

partitions of $A=\left\{a_{1}, \ldots, a_{m}\right\}$.

