(1) Solve the system of congruences:
(a) $x^{137} \equiv 428 \bmod 541$;
(b) $x^{73} \equiv 614 \bmod 1159$;
(c) $x^{751} \equiv 677 \bmod 8023$.
(d) $x^{38993} \equiv 328047 \bmod 401227$. (Hint: $401227=607 \cdot 661$)
(2) Let p_{1} and p_{2} be distinct primes and let e and d be integers satisfying $d e \equiv 1 \bmod \left(p_{1}-1\right)\left(p_{2}-1\right)$. Suppose further that c is an integer with $\operatorname{gcd}\left(c, p_{1} p_{2}\right)>1$. Prove that $x \equiv c^{d} \bmod p_{1} p_{2}$ is a solution to the congruence $x^{e} \equiv c \bmod p_{1} p_{2}$.
(3) Alice publishes her RSA public key: modulus $N=2038667$ and exponent $e=103$.
(a) Bob wants to send Alice the message $m=892383$. What ciphertext does Bob send to Alice?
(b) Alice knows that her modulus factors into a product of two primes, one of which is $p_{1}=1301$. Find a decryption exponent d for Alice.
(c) Alice receives the ciphertext $c=317730$ from Bob. Decrypt the message.
(4) Bob's RSA public key has modulus $N=12191$ and exponent $e=37$. Alice sends Bob the ciphertext $c=587$. Unfortunately, Bob has chosen too small a modulus. Help Eve by factoring N and decrypting Alices message. (Hint. N has a factor smaller than 100.)
(5) For each of the given values of $N=p_{1} p_{2}$ and $\left(p_{1}-1\right)\left(p_{2}-1\right)$ determine p_{1} and p_{2}.
(a) $N=p_{1} p_{2}=352717$ and $\left(p_{1}-1\right)\left(p_{2}-1\right)=351520$;
(b) $N=p_{1} p_{2}=109404161$, and $\left(p_{1}-1\right)\left(p_{2}-1\right)=109380612$;
(c) $N=p_{1} p_{2}=172205490419$, and $\left(p_{1}-1\right)\left(p_{2}-1\right)=172204660344$.

