Homework, due to 12:00 pm, May 1, 2015

- (1) Solve the system of congruences:
 - (a) $\begin{cases} x \equiv 3 \mod 7 \\ x \equiv 4 \mod 9 \end{cases}$
 - (b) $\begin{cases} x \equiv 137 \mod 423 \\ x \equiv 87 \mod 191 \end{cases}$
 - (c) $\begin{cases} x \equiv 37 \mod 43 \\ x \equiv 22 \mod 49 \\ x \equiv 18 \mod 71 \end{cases}$
- (2) Do the following modular computations.
 - (a) $347 + 513 \equiv ???$ (mod 763).
 - (b) $3274 + 1238 + 7231 + 6437 \equiv ???$ (mod 9254).
 - (c) $153 \cdot 287 \equiv ???$ (mod 353).
 - (d) $357 \cdot 862 \cdot 193 \equiv ???$ (mod 943).
 - (e) $5327 \cdot 6135 \cdot 7139 \cdot 2187 \cdot 5219 \cdot 1873 \equiv ????$ (mod 8157). (**Hint.** After each multiplication, reduce modulo 8157 before doing the next multiplication.)
 - (f) $137^2 \equiv ???$ (mod 327)
 - (g) $373^6 \equiv ???$ (mod 581)
 - (h) $23^3 \cdot 19^5 \cdot 11^4 \equiv ???$ (mod 97).
- (3) Find all values of x between 0 and m-1 that are solutions of the following congruences.

(**Hint.** If you can figure out a clever way to find the solution(s), you can just substitute each value x = 1, 2, ..., m - 1 and see which ones work.)

- (a) $x + 17 \equiv 23 \pmod{37}$.
- (b) $x + 42 \equiv 19 \pmod{51}$.
- (c) $x^2 \equiv 3 \pmod{11}$.
- (d) $x^2 \equiv 2 \pmod{13}$.
- (e) $x^2 \equiv 1 \pmod{8}$.
- (f) $x^3 x^2 + 2x 2 \equiv 0 \pmod{11}$.
- (g) $x \equiv 1 \pmod{5}$ and also $x \equiv 2 \pmod{7}$. (Find all solutions modulo 35)
- (4) Suppose that $k^a \equiv 1 \pmod{m}$ and that $k^b \equiv 1 \pmod{m}$. Prove that $k^{\gcd(a,b)} \equiv 1 \pmod{m}$.
- (5) Compute 2015^{-1} mod 9431 in two ways. First, by using the fast powering algorithm, and second, by using the Euclidian algorithm.
- (6) Check whether 77,060,701 is a prime number by computing $2^{77,060,700} \mod 77,060,701$.