
Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 9, April 15th, 2015

Integers mod n .

Recall an important example. Let n ∈ Z+ be a positive integer. We define an equivalence relation on Z as
follows: m ∼ m′ iff m−m′ is divisible by n . Then we have n different classes of equivalent integers:

0 := {0,±n,±2 · n, . . .},
1 := {1, 1± n, 1± 2 · n, . . .},
2 := {2, 2± n, 2± 2 · n, . . .},
· · · · · · · · · · · ·

n− 1 := {n− 1, n− 1± n, n− 1± 2 · n, . . .}.

We obtain that Z =

n−1⋃
i=0

i , and clearly the sets i and i′ do not intersect if i 6= i′ . The set of equivalent classes

{0,1, . . . ,n− 1} is denoted by Z/n . There are well-defined sum and product operations on Z/n :

i + i′ and i · i′

Here are the addition and multiplication tables in Z/5:

+ 0 1 2 3 4

0 0 1 2 3 3
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Next, we have the following addition and multiplication tables in Z/6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

We notice that 2 · 3 = 0 , 4 · 3 = 0 , and 3 · 3 = 3 .

Thus we can add and multiply numbers in Z/n = {0,1, . . . ,n− 1} . There are two special elements here: 0
and 1 :

k + 0 = k, k · 1 = k

Moreover, the addition and product of integers mod n are commutative and associative:

k + m = m + k, (i + k) + m = i + (k + m), and k ·m = m · k, (i · k) ·m = i · (k ·m)

We call Z/n the ring of integers modulo n . Here we say that Z/n is a ring since it has two operations: addition
+ and multiplication · which satisfy several properties:

(1) a+ b = b+ a for all a, b ∈ Z/n ,
(2) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ Z/n ,
(3) for each a ∈ Z/n there exists b ∈ Z/n such that a+ b = 0 ,
(4) a · b = b · a for all a, b ∈ Z/n ,
(5) a · 1 = 1 · a = a ,
(6) (a · b) · c = a · (b · c) for all a, b, c ∈ Z/n ,
(7) a · (b+ c) = a · b+ a · c for all a, b, c ∈ Z/n ,
(8) (b+ c) · a = b · a+ c · a for all a, b, c ∈ Z/n .
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The properties (1)–(3) mean that Z/n is an abelian (commutative) group with respect to the addition +. The
properties (4)–(8) are general for a commutative ring with a unit. Please see all definitions in section 14.1.

There is one more important definition. We say that a commutative and associative ring (R,+, ·) with a unit
is a field if for any a ∈ R , a 6= 0 , there exists a multiplicative inverse b , i.e., such that a · b = 1 .

We have seen that Z/5 is a field, and Z/6 is not a field: we have seen that 5 · 5 = 1 , however, 2 · k 6= 1 for
any k ∈ Z/6.

Lemma 1. Let (R,+, ·) be a field. Then R does not have zero divisors, i.e. if a · b = 0, then either a = 0 or
b = 0.

Proof. Assume a · b = 0, then if b 6= 0, we find b−1 such that b · b−1 = 1. Then we multiply by b−1 both sides
of a · b = 0. We obtain: a · b · b−1 = a = 0, i.e. a = 0. �

Theorem 1. The ring Z/n is a field if and only if n is a prime integer.

Proof. Assume n is a prime integer, and 0 < k < n . Then gcd(n, k) = 1, thus there exist integers t, s such that
t · n + s · k = 1. This means that s · k ≡ 1 mod n . Thus every such k has an inverse. Assume that n is not a
prime, i.e. n = n1 · n2 , where 1 < n1, n2 < n . We obtain that n1 · n2 ≡ 0 mod n . Thus Z/n cannot be a field
by Lemma 1. �

An element a ∈ Z/n is a unit if there exists a multipicative inverse, i.e. such b ∈ Z/n that a · b = 1. Say,
1, 5 ∈ Z/6 are units, but 2, 3, 4 ∈ Z/6 are not.

Theorem 2. An element k ∈ Z/n is a unit if and only if gcd(k, n) = 1.

Proof. Indeed, assume gcd(k, n) = 1. Then there exist integers t, s such that t · n+ s · k = 1. This means that
s · k ≡ 1 mod n . Assume there exist inverse s of k , i.e. k · s ≡ 1 mod n , or k · s = n · t + 1 for some t . Thus
1 = k · s+ n · (−t) which mens that gcd(k, n) = 1. �

Example. Recall that 2015 = 5 · 13 · 31. We find the inverse of 101 in Z/2015:

2015 = 101 · 19 + 96, 96 = 2015− 101 · 19
101 = 96 · 1 + 5, 5 = 101− 96 · 1
96 = 5 · 19 + 1, 1 = 96− 5 · 19.

We have:
1 = 96− 5 · 19 = 96− (101− 96 · 1) · 19

= 96 · 20− 101 · 19 = (2015− 101 · 19) · 20
= 2015 · 20− 101 · 399

We obtain that 101 · (−399) ≡ 1 mod 2015. We have that −399 ≡ 1606 mod 2015. Thus 101−1 = 1606 in
Z/2015.

Exercise. Compute 17−1 in Z/35, 25−1 in Z/72.

Euler function. Recall that for a for given positive integer n , consider the set of numbers m such that 1 ≤ m < n
and gcd(m,n) = 1. Leonhard Euler defined the function:

φ(n) = |{ m | 1 ≤ m < n, and gcd(m,n) = 1 }|.
Here is the values of φ(n) for some n :

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
φ(n) 1 2 2 4 2 6 4 9 4 10 4 12 6 8 8 16

There is a simple formula to compute φ(n). Recall that for every integer n there exist primes p1, . . . , ps and
positive e1, . . . , es such that n = pe11 · · · pess . Here is the formula:

φ(n) = n

s∏
i=1

(
1− 1

pi

)
Theorem 3. Let n ≥ 2. Then there are exactly φ(n) units in Z/n .


