Summary on Lecture 9, April 15th, 2015

Integers mod n.

Recall an important example. Let $n \in \mathbf{Z}_{+}$be a positive integer. We define an equivalence relation on \mathbf{Z} as follows: $m \sim m^{\prime}$ iff $m-m^{\prime}$ is divisible by n. Then we have n different classes of equivalent integers:

$$
\begin{array}{cl}
\mathbf{0} & :=\{0, \pm n, \pm 2 \cdot n, \ldots\} \\
\mathbf{1} & :=\{1,1 \pm n, 1 \pm 2 \cdot n, \ldots\} \\
\mathbf{2} & :=\{2,2 \pm n, 2 \pm 2 \cdot n, \ldots\} \\
\ldots & \cdots \cdots \cdots \\
\mathbf{n}-1 & :=\{n-1, n-1 \pm n, n-1 \pm 2 \cdot n, \ldots\} .
\end{array}
$$

We obtain that $\mathbf{Z}=\bigcup_{i=0}^{n-1} \mathbf{i}$, and clearly the sets \mathbf{i} and \mathbf{i}^{\prime} do not intersect if $i \neq i^{\prime}$. The set of equivalent classes $\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n}-1\}$ is denoted by \mathbf{Z} / n. There are well-defined sum and product operations on \mathbf{Z} / n :

$$
\mathbf{i}+\mathbf{i}^{\prime} \quad \text { and } \quad \mathbf{i} \cdot \mathbf{i}^{\prime}
$$

Here are the addition and multiplication tables in $\mathbf{Z} / 5$:

+	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{4}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{1}$	$\mathbf{3}$
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{2}$
$\mathbf{4}$	$\mathbf{0}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$

Next, we have the following addition and multiplication tables in $\mathbf{Z} / 6$:

+	$\mathbf{0}$	$\mathbf{1}$	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

\times	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{0}$						
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

We notice that $\mathbf{2} \cdot \mathbf{3}=\mathbf{0}, \mathbf{4} \cdot \mathbf{3}=\mathbf{0}$, and $\mathbf{3} \cdot \mathbf{3}=\mathbf{3}$.
Thus we can add and multiply numbers in $\mathbf{Z} / n=\{\mathbf{0}, \mathbf{1}, \ldots, \mathbf{n}-1\}$. There are two special elements here: $\mathbf{0}$ and 1:

$$
\mathbf{k}+\mathbf{0}=\mathbf{k}, \quad \mathbf{k} \cdot \mathbf{1}=\mathbf{k}
$$

Moreover, the addition and product of integers $\bmod n$ are commutative and associative:

$$
\mathbf{k}+\mathbf{m}=\mathbf{m}+\mathbf{k}, \quad(\mathbf{i}+\mathbf{k})+\mathbf{m}=\mathbf{i}+(\mathbf{k}+\mathbf{m}), \quad \text { and } \quad \mathbf{k} \cdot \mathbf{m}=\mathbf{m} \cdot \mathbf{k}, \quad(\mathbf{i} \cdot \mathbf{k}) \cdot \mathbf{m}=\mathbf{i} \cdot(\mathbf{k} \cdot \mathbf{m})
$$

We call \mathbf{Z} / n the ring of integers modulo n. Here we say that \mathbf{Z} / n is a ring since it has two operations: addition + and multiplication . which satisfy several properties:
(1) $a+b=b+a$ for all $a, b \in \mathbf{Z} / n$,
(2) $(a+b)+c=a+(b+c)$ for all $a, b, c \in \mathbf{Z} / n$,
(3) for each $a \in \mathbf{Z} / n$ there exists $b \in \mathbf{Z} / n$ such that $a+b=\mathbf{0}$,
(4) $a \cdot b=b \cdot a$ for all $a, b \in \mathbf{Z} / n$,
(5) $a \cdot \mathbf{1}=\mathbf{1} \cdot a=a$,
(6) $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in \mathbf{Z} / n$,
(7) $a \cdot(b+c)=a \cdot b+a \cdot c$ for all $a, b, c \in \mathbf{Z} / n$,
(8) $(b+c) \cdot a=b \cdot a+c \cdot a$ for all $a, b, c \in \mathbf{Z} / n$.

The properties (1)-(3) mean that \mathbf{Z} / n is an abelian (commutative) group with respect to the addition + . The properties (4)-(8) are general for a commutative ring with a unit. Please see all definitions in section 14.1.

There is one more important definition. We say that a commutative and associative ring $(R,+, \cdot)$ with a unit is a field if for any $a \in R, a \neq \mathbf{0}$, there exists a multiplicative inverse b, i.e., such that $a \cdot b=\mathbf{1}$.

We have seen that $\mathbf{Z} / 5$ is a field, and $\mathbf{Z} / 6$ is not a field: we have seen that $\mathbf{5} \cdot \mathbf{5}=\mathbf{1}$, however, $\mathbf{2} \cdot \mathbf{k} \neq \mathbf{1}$ for any $\mathbf{k} \in \mathbf{Z} / 6$.

Lemma 1. Let $(R,+, \cdot)$ be a field. Then R does not have zero divisors, i.e. if $a \cdot b=0$, then either $a=0$ or $b=0$.
Proof. Assume $a \cdot b=0$, then if $b \neq 0$, we find b^{-1} such that $b \cdot b^{-1}=1$. Then we multiply by b^{-1} both sides of $a \cdot b=0$. We obtain: $a \cdot b \cdot b^{-1}=a=0$, i.e. $a=0$.
Theorem 1. The ring \mathbf{Z} / n is a field if and only if n is a prime integer.
Proof. Assume n is a prime integer, and $0<k<n$. Then $\operatorname{gcd}(n, k)=1$, thus there exist integers t, s such that $t \cdot n+s \cdot k=1$. This means that $s \cdot k \equiv 1 \bmod n$. Thus every such k has an inverse. Assume that n is not a prime, i.e. $n=n_{1} \cdot n_{2}$, where $1<n_{1}, n_{2}<n$. We obtain that $n_{1} \cdot n_{2} \equiv 0 \bmod n$. Thus \mathbf{Z} / n cannot be a field by Lemma 1.

An element $a \in \mathbf{Z} / n$ is a unit if there exists a multipicative inverse, i.e. such $b \in \mathbf{Z} / n$ that $a \cdot b=1$. Say, $1,5 \in \mathbf{Z} / 6$ are units, but $2,3,4 \in \mathbf{Z} / 6$ are not.
Theorem 2. An element $k \in \mathbf{Z} / n$ is a unit if and only if $\operatorname{gcd}(k, n)=1$.
Proof. Indeed, assume $\operatorname{gcd}(k, n)=1$. Then there exist integers t, s such that $t \cdot n+s \cdot k=1$. This means that $s \cdot k \equiv 1 \bmod n$. Assume there exist inverse s of k, i.e. $k \cdot s \equiv 1 \bmod n$, or $k \cdot s=n \cdot t+1$ for some t. Thus $1=k \cdot s+n \cdot(-t)$ which mens that $\operatorname{gcd}(k, n)=1$.
Example. Recall that $2015=5 \cdot 13 \cdot 31$. We find the inverse of 101 in $\mathbf{Z} / 2015$:

$$
\begin{array}{ll}
2015=101 \cdot 19+96, & 96=2015-101 \cdot 19 \\
101=96 \cdot 1+5, & 5=101-96 \cdot 1 \\
96=5 \cdot 19+1, & 1=96-5 \cdot 19
\end{array}
$$

We have:

$$
\begin{aligned}
1 & =96-5 \cdot 19=96-(101-96 \cdot 1) \cdot 19 \\
& =96 \cdot 20-101 \cdot 19=(2015-101 \cdot 19) \cdot 20 \\
& =2015 \cdot 20-101 \cdot 399
\end{aligned}
$$

We obtain that $101 \cdot(-399) \equiv 1 \bmod 2015$. We have that $-399 \equiv 1606 \bmod 2015$. Thus $101^{-1}=1606$ in Z/2015.
Exercise. Compute 17^{-1} in $\mathbf{Z} / 35,25^{-1}$ in $\mathbf{Z} / 72$.
Euler function. Recall that for a for given positive integer n, consider the set of numbers m such that $1 \leq m<n$ and $\operatorname{gcd}(m, n)=1$. Leonhard Euler defined the function:

$$
\phi(n)=\mid\{m \mid 1 \leq m<n, \text { and } \operatorname{gcd}(m, n)=1\} \mid
$$

Here is the values of $\phi(n)$ for some n :

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
n & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline \phi(n) & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 9 & 4 & 10 & 4 & 12 & 6 & 8 & 8 & 16
\end{array}
$$

There is a simple formula to compute $\phi(n)$. Recall that for every integer n there exist primes p_{1}, \ldots, p_{s} and positive e_{1}, \ldots, e_{s} such that $n=p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}$. Here is the formula:

$$
\phi(n)=n \prod_{i=1}^{s}\left(1-\frac{1}{p_{i}}\right)
$$

Theorem 3. Let $n \geq 2$. Then there are exactly $\phi(n)$ units in \mathbf{Z} / n.

