
Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 7, April 10th, 2015

Equivalence relations and partitions.

Let A be a set. A family of subsets {Ai}i∈I , Ai ⊆ A , is called a partition if

A =
⋃
i∈I

Ai, Ai ∩Ai′ = ∅ if i 6= i′.

Important example. Let n ∈ Z+ be a positive integer. We define an equivalence relation on Z as follows:
m ∼ m′ iff m−m′ is divisible by n . Then we have n different classes of equivalent integers:

0 := {0,±n,±2 · n, . . .},
1 := {1, 1± n, 1± 2 · n, . . .},
2 := {2, 2± n, 2± 2 · n, . . .},
· · · · · · · · · · · ·

n− 1 := {n− 1, n− 1± n, n− 1± 2 · n, . . .}.

We obtain that Z =

n−1⋃
i=0

i , and clearly the sets i and i′ do not intersect if i 6= i′ . The set of equivalent classes

{0,1, . . . ,n− 1} is denoted by Z/n . There are well-defined sum and product operations on Z/n :

i + i′ and i · i′

Here are the addition and multiplication tables in Z/5:

+ 0 1 2 3 4

0 0 1 2 3 3
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Next, we have the following addition and multiplication tables in Z/6:

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

We notice that 2 · 3 = 0 , 4 · 3 = 0 , and 3 · 3 = 3 .

Let R ⊂ A×A be an equivalence relation. For each element x ∈ A we define a subset

[x] = { y ∈ A | (x, y) ∈ R }
We notice that either [x] = [x′] or [x] ∩ [x′] = ∅ . Indeed, assume that [x] ∩ [x′] 6= ∅ , and z ∈ [x] ∩ [x′] . Then
(x, z) ∈ R and (x′, z) ∈ R , and this implies that (x, x′) ∈ R , and thus [x] = [x′] . We obtain that the family of
sets {[x]} is a partition of A .

Now let {Ai}i∈I be a partition of A . Then we define a relation R ⊂ A×A as follows:

(x, x′) ∈ R iff there exists i ∈ I such that x, x′ ∈ Ai.

It is easy to check that R ⊂ A×A is an equivalence relation.

Theorem 1. Let A be a set. Then there is one-to-one correspondence between equivalence relations on A and
partitions of A .

Now we would like to count all possible partitions of a finite set A = {a1, . . . , am} . We’ll say that a partition

A =
⋃k

i=1 Ai has a size k . Clearly, 1 ≤ k ≤ m . We fix such k and count how many partitions of size k are there.
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To get started, we can count how many onto functions are there f : A → B , where B = {b1, . . . , bk} . Then
we can think of bi as a box to collect elements for Ai , thus we should forget the order of those boxes. By using
the inclusion-exclusion principle, we obtain

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)m

onto functions are there f : A→ B . We divide by k! to obtain the Stirling number

S(m, k) =
1

k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)m.

Now we sum up partitions of A of all sizes. We obtain that there are

m∑
k=1

S(m, k) =

m∑
k=1

(
1

k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)m

)
partitions of A = {a1, . . . , am} .


