Summary on Lecture 7, April 10th, 2015

Equivalence relations and partitions.

Let A be a set. A family of subsets $\{A_i\}_{i \in I}$, $A_i \subseteq A$, is called a partition if

$$A = \bigcup_{i \in I} A_i, \quad A_i \cap A_{i'} = \emptyset \text{ if } i \neq i'.$$

Important example. Let $n \in \mathbb{Z}_+$ be a positive integer. We define an equivalence relation on \mathbb{Z} as follows: $m \sim m'$ iff m - m' is divisible by n. Then we have n different classes of equivalent integers:

We obtain that $\mathbf{Z} = \bigcup_{i=0}^{n-1} \mathbf{i}$, and clearly the sets \mathbf{i} and \mathbf{i}' do not intersect if $i \neq i'$. The set of equivalent classes $\{\mathbf{0}, \mathbf{1}, \dots, \mathbf{n} - 1\}$ is denoted by \mathbf{Z}/n . There are well-defined sum and product operations on \mathbf{Z}/n :

 $\mathbf{i} + \mathbf{i}'$ and $\mathbf{i} \cdot \mathbf{i}'$

Here are the addition and multiplication tables in $\mathbb{Z}/5$:

+	0	1	2	3	4
0	0	1	2	3	3
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Next, we have the following addition and multiplication tables in $\mathbb{Z}/6$:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

We notice that $2 \cdot 3 = 0$, $4 \cdot 3 = 0$, and $3 \cdot 3 = 3$.

Let $\mathcal{R} \subset A \times A$ be an equivalence relation. For each element $x \in A$ we define a subset

$$[x] = \{ y \in A \mid (x, y) \in \mathcal{R} \}$$

We notice that either [x] = [x'] or $[x] \cap [x'] = \emptyset$. Indeed, assume that $[x] \cap [x'] \neq \emptyset$, and $z \in [x] \cap [x']$. Then $(x, z) \in \mathcal{R}$ and $(x', z) \in \mathcal{R}$, and this implies that $(x, x') \in \mathcal{R}$, and thus [x] = [x']. We obtain that the family of sets $\{[x]\}$ is a partition of A.

Now let $\{A_i\}_{i \in I}$ be a partition of A. Then we define a relation $\mathcal{R} \subset A \times A$ as follows:

 $(x, x') \in \mathcal{R}$ iff there exists $i \in I$ such that $x, x' \in A_i$.

It is easy to check that $\mathcal{R} \subset A \times A$ is an equivalence relation.

Theorem 1. Let A be a set. Then there is one-to-one correspondence between equivalence relations on A and partitions of A.

Now we would like to count all possible partitions of a finite set $A = \{a_1, \ldots, a_m\}$. We'll say that a partition $A = \bigcup_{i=1}^k A_i$ has a size k. Clearly, $1 \le k \le m$. We fix such k and count how many partitions of size k are there.

To get started, we can count how many onto functions are there $f : A \to B$, where $B = \{b_1, \ldots, b_k\}$. Then we can think of b_i as a box to collect elements for A_i , thus we should forget the order of those boxes. By using the inclusion-exclusion principle, we obtain

$$\sum_{i=0}^{k-1} (-1)^i \binom{k}{i} (k-i)^m$$

onto functions are there $f: A \to B$. We divide by k! to obtain the Stirling number

$$S(m,k) = \frac{1}{k!} \sum_{i=0}^{k-1} (-1)^i \binom{k}{i} (k-i)^m.$$

Now we sum up partitions of A of all sizes. We obtain that there are

$$\sum_{k=1}^{m} S(m,k) = \sum_{k=1}^{m} \left(\frac{1}{k!} \sum_{i=0}^{k-1} (-1)^{i} \binom{k}{i} (k-i)^{m} \right)$$

partitions of $A = \{a_1, \ldots, a_m\}.$