Summary on Lecture 6, April 8th, 2015

Zero-one matrices and graphs.

Let $G=(V, E)$ be a directed graph (digraph), where $|V|=n$. Then a vertex $e=\left(v, v^{\prime}\right) \in E$ is an ordered pair of vertices. Thus we can describe vertices as a binary relation on the set of vertices. Let us consider the following directed graphs:

(a) Digraph G_{1}

(b) Digraph G_{2}

Here we have the adjacency matrices $M\left(G_{1}\right)$ and $M\left(G_{2}\right)$ of these digraphs:

$$
M\left(G_{1}\right)=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0
\end{array}\right] \quad M\left(G_{2}\right)=\left[\begin{array}{ccccc}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Partial order and Hasse diagrams.

Let A be a set. We recall that a partial order on A is a binary relation $\mathcal{R} \subset A \times A$ which is reflexive, antisymmetric and transitive. A useful tool to work with a partial order is a Hasse diagram. We give several examples.

Examples. (a) Let S be a set, and $\mathcal{P}(S)$ be a set of all subsets of S. Then we define the relation: for $A, B \in \mathcal{P}(S), A \leq B$ iff $A \subseteq B$. Here is a Hasse diagram of this partial order if $S=\{1,2,3,4\}$.

(b) Let $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$ be a prime decomposition of a positive integer n. Let $D(n)$ be the set of all divisors of n. Then every $d \in D(n)$ has a form $d=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, where $0 \leq a_{i} \leq e_{i}$ for each $i=1, \ldots, k$. We already have considered the following partial order on $D(n): d \leq d^{\prime}$ iff d is a divisor of d^{\prime}. Below is a Hasse diagram for this partial order if $n=2015$.

Let \mathcal{R} be a partial order on A. We say that \mathcal{R} is a linear (or total) order on A if for any $x, y \in A$ either $(x, y) \in \mathcal{R}$ or $(y, x) \in \mathcal{R}$.

Example. Let $A=\left\{1,2,2^{2}, \ldots, 2^{k}\right\}$, and $(x \leq y)$ iff x is a divisor of y, i.e., $x \mid y$. This is a linear order on A.
There are some practical applications of these concepts.
Example. Assume we would like to manufacture a product X (say, a toy). In order to do that there are several operations we have to perform according to the following Hasse diagram:

O
A

Nevertheless we have to organize the production in linear order since those operations could not be done at the same time. We select (from right to left) a "highest" leaf in that diagram, and we delete it. Then we recur. We obtain the following linear order: $A<B<C<D<G<F<E$. This new linear order provides a "linear" process to manufacture our product.
Definition. Let A a poset (i.e., a partial ordered set). We say that $x \in A$ is maximal if $x \leq a$ implies $x=a$. Similarly, $y \in A$ is minimal if $a \leq y$ implies $a=y$.

Theorem 1. Let A be a finite poset. Then there exists a maximal (minimal) element in A.
Exercise. Prove Theorem 1.
Definition. Let A a poset. An element $x \in A$ is a greatest element if $a \leq x$ for all $a \in A$. Similarly, an element $y \in A$ is a least element if $y \leq a$ for all $a \in A$.
Theorem 2. Let A be a poset. Assume there exists a greatest (least) element in A. Then it is unique.
Exercise. Prove Theorem 2.

