Summary on Lecture 5, April 6th, 2015

More on relations: matrices and graphs.

Definition. Let A, B, C be sets, and $\mathcal{R}_1 \subset A \times B$, $\mathcal{R}_2 \subset B \times C$ be two binary relations. A composite relation $\mathcal{R} = \mathcal{R}_1 \circ \mathcal{R}_2$ is defined as the set

$$\mathcal{R} := \{ (a,c) \mid \text{there exists } b \in B \text{ such that } (a,b) \in \mathcal{R}_1 \text{ and } (b,c) \in \mathcal{R}_2 \}.$$

Example. Let $A = \{1, 2, 3, 4, 5\}$, $B = \{w, x, y, z\}$, $C = \{a, b, c\}$. The relations $\mathcal{R}_1 \subset A \times B$, $\mathcal{R}_2 \subset B \times C$ are given as follows:

$$\mathcal{R}_{1} = \begin{bmatrix} & w & x & y & z \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 3 & 1 & 0 & 1 & 0 & 0 \\ 4 & 0 & 1 & 0 & 1 & 0 \\ 5 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} \qquad \mathcal{R}_{2} = \begin{bmatrix} & a & b & c \\ w & 1 & 0 & 0 & 0 \\ x & 0 & 1 & 0 & 0 \\ y & 0 & 0 & 0 & 0 \\ z & 0 & 1 & 1 & 0 \end{bmatrix}$$

Here we put 1's for all pairs (a, b) and (b, c) such that $(a, b) \in \mathcal{R}_1$ and $(b, c) \in \mathcal{R}_2$; otherwise we put zeros. We obtain the matrices

$$M(\mathcal{R}_1) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix} \qquad M(\mathcal{R}_2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

which are called zero-one matrices corresponding to the realtions \mathcal{R}_1 and \mathcal{R}_2 . We notice that the relation $\mathcal{R} = \mathcal{R}_1 \circ \mathcal{R}_2$ has the following matrix:

$$M(\mathcal{R}_1 \circ \mathcal{R}_2) = \left[egin{array}{cccc} 1 & 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 1 & 0 & 1 & 0 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight] = \left[egin{array}{cccc} 1 & 1 & 0 \ 0 & 0 & 0 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight]$$

Here we use a standard multiplication of matrices, plus we used the following rules: $0 \cdot 0 = 0$, $0 \cdot 1 = 1 \cdot 0 = 0$, $1 \cdot 1 = 1$, and 1 + 1 = 1. The last rule is designed specifically for zero-one matrices.

Theorem 1. Let Let A, B, C, D be sets, and $\mathcal{R}_1 \subset A \times B$, $\mathcal{R}_2 \subset B \times C$, $\mathcal{R}_3 \subset C \times D$ be binary relations. Then $(\mathcal{R}_1 \circ \mathcal{R}_1) \circ \mathcal{R}_3 = \mathcal{R}_1 \circ (\mathcal{R}_1 \circ \mathcal{R}_3)$.

Exercise. Prove Theorem 1.

Let $\mathcal{R} \subset A \times A$ be a binary relation. Then a power \mathcal{R}^{ℓ} is defined recursively: $\mathcal{R}^1 := \mathcal{R}, \ \mathcal{R}^{\ell+1} := \mathcal{R} \circ \mathcal{R}^{\ell}$.

Examples. (1) Let $A = \{1, 2, 3, 4, 5\}$, and

$$M(\mathcal{R}) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad M(\mathcal{R}^2) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

We can notice that $M(\mathcal{R}^{2k+1}) = M(\mathcal{R})$ and $M(\mathcal{R}^{2k}) = M(\mathcal{R}^2)$. Thus $\mathcal{R}^{2k+1} = \mathcal{R}$ and $\mathcal{R}^{2k} = \mathcal{R}^2$.

(2) Let $A = \{1, 2, 3, 4\}$, and

$$M(\mathcal{R}) = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \quad M(\mathcal{R}^2) = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] = \left[\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

We obtain that $\mathcal{R}^{\ell} = \emptyset$ for $\ell \geq 4$.

Exercise. Let A be a finite set with |A| = n, and $\mathcal{R} \subset A \times A$ be a relation. Prove the following properties of the zero-one matrix $M(\mathcal{R})$:

- (a) $M(\mathcal{R}) = 0$ (the matrix of all 0's) if and only if $\mathcal{R} = \emptyset$.
- (b) $M(\mathcal{R}) = 1$ (the matrix of all 1's) if and only if $\mathcal{R} = A \times A$.
- (c) $M(\mathcal{R}^{\ell}) = M^{\ell}(\mathcal{R})$ for all $\ell \geq 1$.

Let $M = \{m_{ij}\}$, $M' = \{m'_{ij}\}$ be two zero-one matrices of the same size. We say that $M \leq M'$ if and only if $m_{ij} \leq m'_{ij}$ for all indices i, j. We denote by I_n the identity matrix of the size n. Also if M is a matrix, we denote by M^T its transpose. Finally, if $M = \{m_{ij}\}$, $M' = \{m'_{ij}\}$ are two zero-one matrices of the same size, we define the matrix $M \cap M' = \{m''_{ij}\}$ as

$$m_{ij}'' = \begin{cases} 1 & \text{if} \quad m_{ij} = m_{ij}' = 1 \\ 0 & \text{else} \end{cases}$$

Theorem 2. Let A be a finite set with |A| = n, and $\mathcal{R} \subset A \times A$ be a relation. Then

- (a) \mathcal{R} is reflexive if and only if $I_n \leq M(\mathcal{R})$;
- (b) \mathcal{R} is symmetric if and only if $M(\mathcal{R})^T = M(\mathcal{R})$;
- (c) \mathcal{R} is transitive if and only if $M(\mathcal{R})^2 \leq M(\mathcal{R})$;
- (d) \mathcal{R} is symmetric if and only if $M(\mathcal{R}) \cap M(\mathcal{R})^T \leq I_n$.

Exercise. Prove any three of the statements (a), (b), (c) or (d).