Summary on Lecture 4, April 3d, 2015

Finite State Machines: More examples.

(7) Delay machine. Now we describe a finite state machine which delays the sequence by putting first k zeros. For example, if $k=1$, the input sequence $11110111110111010110 \ldots$ gives the following output

$$
\begin{aligned}
& 11110111110111010110 \ldots \\
& 011110111110111010110 \ldots
\end{aligned}
$$

Here is the diagram describing the functions ν and ω :

The case $k=2$ is essentially more complicated since the machine has to remember two previous digits. Here the input sequence $11110111110111010110 \ldots$ gives the output $0011110111110111010110 \ldots$ Here is the diagram describing the functions ν and ω :

We notice that the states s_{0}, s_{1}, s_{2} have only 0 as an output, and the states $s_{3}, s_{4}, s_{5}, s_{6}$ "remember" the prior inputs $00,10,10,11$ respectively.

Exercise. Construct a delay machine with $k=3$.

Equivalence and partial order relations

Let A, B be sets (which live, as usual, in some "universal set"). Recall that a subset $\mathcal{R} \subset A \times B$ is called a binary relation.

Example 1. Let $A=B=\mathbf{Z}$, and $n \in \mathbf{Z}$. Then $(k, \ell) \in \mathcal{R}$ if and only if $k-\ell \equiv 0 \bmod n$.
Example 2. Let $A=B=\mathbf{Z}$. Then $(k, \ell) \in \mathcal{R}$ if and only if $k \leq \ell$.
Now we let $\mathcal{R} \subset A \times A$ be a binary relation on A, i.e., when $A=B$.
Definition. We say that a binary relation \mathcal{R} on A is an equivalence relation if it satisfies the following properties:
(R) $(x, x) \in \mathcal{R}$ for each $a \in A$ (Reflexivity);
(S) if $(x, y) \in \mathcal{R}$, then $(y, x) \in \mathcal{R}$ (Symmetry);
(T) if $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R}$, then $(y, z) \in \mathcal{R}$ (Transitivity).

Exercise. Check that the relation \mathcal{R} from Example 1 is an equivalence relation, and that is not true for the relation from Example 2.

Definition. We say that a binary relation \mathcal{R} on A is an partial order on A if it satisfies the following properties:
(R) $(x, x) \in \mathcal{R}$ for each $a \in A$ (Reflexivity);
(A) if $(x, y) \in \mathcal{R}$, and $(y, x) \in \mathcal{R}$, then $x=y$ (Antisymmetry);
(T) if $(x, y) \in \mathcal{R}$ and $(y, z) \in \mathcal{R}$, then $(y, z) \in \mathcal{R}$. (Transitivity).

Remark. The usual relation partial order " \leq " on real numbers satisfies all the properties (R), (A), (T).
In order to understand well the above realtions, we will do some counting. Let A be a finite set, $|A|=n$.
(R) Let \mathcal{R} be a reflexive relation on A. Then $(a, a) \in \mathcal{R}$ for all $a \in A$. Thus \mathcal{R} contains at least the diagonal $\left\{\left(a_{1}, a_{1}\right), \ldots,\left(a_{n}, a_{n}\right)\right\}$, and \mathcal{R} may contain any subset from $A \times A \backslash\left\{\left(a_{1}, a_{1}\right), \ldots,\left(a_{n}, a_{n}\right)\right\}$. Thus we have $2^{n^{2}-n}$ reflexive relations on A.
(S) Let \mathcal{R} be a symmetric relation on A. To count how many such relation we have, we notice that the difference $A \times A \backslash\left\{\left(a_{1}, a_{1}\right), \ldots,\left(a_{n}, a_{n}\right)\right\}$ consists of pairs $\left(a_{i}, a_{j}\right)$ with $i \neq j$. Then if $\left(a_{i}, a_{j}\right) \in \mathcal{R}$, then $\left(a_{j}, a_{i}\right) \in \mathcal{R}$, so it is enough to count pairs $\left(a_{i}, a_{j}\right)$ with $i \leq j$. We obtain $2^{n} \cdot 2^{\frac{n^{2}-n}{2}}=2^{\frac{n^{2}+n}{2}}$ symmetric relations.

Example 3. Here is an interesting example of partial order. Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$ be a decomposition of n through primes. We assume that $p_{1}<p_{2}<\cdots<p_{k}$. Then every divisor d of n has a form $d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, where $0 \leq a_{i} \leq e_{i}$ for each $i=1,2, \ldots, k$. Thus n has $\prod_{i=1}^{k}\left(e_{i}+1\right)$ divisors. Then for two divisors d, d^{\prime} we write $d \leq d^{\prime}\left(\right.$ or $\left.\left(d, d^{\prime}\right) \in \mathcal{R}\right)$ iff d divides d^{\prime}. Let

$$
d=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}, \quad d^{\prime}=p_{1}^{a_{1}^{\prime}} p_{2}^{a_{2}^{\prime}} \cdots p_{k}^{a_{k}^{\prime}}
$$

be two divisors of n. Then d divides d^{\prime} iff $0 \leq a_{i} \leq a_{i}^{\prime} \leq e_{i}$ for each $i=1,2, \ldots, k$. Consider just one index i : we can use the problem of counting number of ways to place 2 objects to $e_{i}+1$ boxes. We obtain $\binom{e_{i}+1+2-1}{2}=\binom{e_{i}+2}{2}$ pairs $\left(a_{i}, a_{i}^{\prime}\right)$ satisfying $0 \leq a_{i} \leq a_{i}^{\prime} \leq e_{i}$. We obtain:

$$
|\mathcal{R}|=\prod_{i=1}^{k}\binom{e_{i}+2}{2}
$$

