
Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 4, April 3d, 2015

Finite State Machines: More examples.

(7) Delay machine. Now we describe a finite state machine which delays the sequence by putting first k zeros.
For example, if k = 1, the input sequence 11110111110111010110... gives the following output

11110111110111010110...
011110111110111010110...

Here is the diagram describing the functions ν and ω :

s0

s1

s2

(0,0)

(1,0)

(1,1)

(0,0)

(1,0)(0,1)

The case k = 2 is essentially more complicated since the machine has to remember two previous digits. Here
the input sequence 11110111110111010110... gives the output 0011110111110111010110... Here is the diagram
describing the functions ν and ω :

s0

s1

s2

s3

s6

s4

s5

(0,0)

(1,0)

(1,0)

(0,0)

(0,0)

(1,0)

(1,1)

(0,0)

(0,1)

(1,0)
(0,1)

(1,0)

(0,0) (1,1)
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We notice that the states s0, s1, s2 have only 0 as an output, and the states s3, s4, s5, s6 “remember” the prior
inputs 00, 10, 10, 11 respectively.

Exercise. Construct a delay machine with k = 3.

Equivalence and partial order relations

Let A,B be sets (which live, as usual, in some “universal set”). Recall that a subset R ⊂ A × B is called a
binary relation.

Example 1. Let A = B = Z , and n ∈ Z . Then (k, `) ∈ R if and only if k − ` ≡ 0 mod n .

Example 2. Let A = B = Z . Then (k, `) ∈ R if and only if k ≤ ` .

Now we let R ⊂ A×A be a binary relation on A , i.e., when A = B .

Definition. We say that a binary relation R on A is an equivalence relation if it satisfies the following properties:

(R) (x, x) ∈ R for each a ∈ A (Reflexivity);
(S) if (x, y) ∈ R , then (y, x) ∈ R (Symmetry);
(T) if (x, y) ∈ R and (y, z) ∈ R , then (y, z) ∈ R (Transitivity).

Exercise. Check that the relation R from Example 1 is an equivalence relation, and that is not true for the
relation from Example 2.

Definition. We say that a binary relation R on A is an partial order on A if it satisfies the following properties:

(R) (x, x) ∈ R for each a ∈ A (Reflexivity);
(A) if (x, y) ∈ R , and (y, x) ∈ R , then x = y (Antisymmetry);
(T) if (x, y) ∈ R and (y, z) ∈ R , then (y, z) ∈ R . (Transitivity).

Remark. The usual relation partial order “≤” on real numbers satisfies all the properties (R), (A), (T).

In order to understand well the above realtions, we will do some counting. Let A be a finite set, |A| = n .

(R) Let R be a reflexive relation on A . Then (a, a) ∈ R for all a ∈ A . Thus R contains at least the diagonal
{(a1, a1), . . . , (an, an)} , and R may contain any subset from A × A \ {(a1, a1), . . . , (an, an)} . Thus we

have 2n
2−n reflexive relations on A .

(S) Let R be a symmetric relation on A . To count how many such relation we have, we notice that the
difference A×A \ {(a1, a1), . . . , (an, an)} consists of pairs (ai, aj) with i 6= j . Then if (ai, aj) ∈ R , then

(aj , ai) ∈ R , so it is enough to count pairs (ai, aj) with i ≤ j . We obtain 2n · 2n2−n
2 = 2

n2+n
2 symmetric

relations.

Example 3. Here is an interesting example of partial order. Let n = pe11 p
e2
2 · · · p

ek
k be a decomposition of n

through primes. We assume that p1 < p2 < · · · < pk . Then every divisor d of n has a form d = pa1
1 p

a2
2 · · · p

ak

k ,

where 0 ≤ ai ≤ ei for each i = 1, 2, . . . , k . Thus n has

k∏
i=1

(ei + 1) divisors. Then for two divisors d , d′ we write

d ≤ d′ (or (d, d′) ∈ R) iff d divides d′ . Let

d = pa1
1 p

a2
2 · · · p

ak

k , d′ = p
a′1
1 p

a′2
2 · · · p

a′k
k

be two divisors of n . Then d divides d′ iff 0 ≤ ai ≤ a′i ≤ ei for each i = 1, 2, . . . , k . Consider just one index i : we

can use the problem of counting number of ways to place 2 objects to ei+1 boxes. We obtain
(
ei+1+2−1

2

)
=
(
ei+2
2

)
pairs (ai, a

′
i) satisfying 0 ≤ ai ≤ a′i ≤ ei . We obtain:

|R| =
k∏

i=1

(
ei + 2

2

)
.


