Summary on Lecture 20, May 26th, 2015

The Symmetric Group.

Recall that a set G is a group if there is a binary operation $\left(g_{1}, g_{2}\right) \mapsto g_{1} \circ g_{2}$ called a product satisfying the folllowing properties:
(1) For all elements $g_{1}, g_{2} \in G, g_{1} \circ g_{2} \in G$ (Closure of G under the operation).
(2) For all elements $g_{1}, g_{2}, g_{3} \in G,\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)$ (The Associative property).
(3) There exists $e \in G$ such that $e \circ g=g \circ e=g$ for all $g \in G$ (Existence of the identity).
(4) For each $g \in G$ there exists $\bar{g} \in G$ such that $g \circ \bar{g}=\bar{g} \circ g=e$ (Existence of Inverses).

We already know few examples of groups:

- $(G, \circ)=(\mathbf{Z},+)$, where $e=0 \in \mathbf{Z}$, and the inverse of n is $-n$.
- $(G, \circ)=\left(\mathbf{Z}_{n},+\right)$, where again $e=0 \in \mathbf{Z}_{n}$.
- Let p be a prime, and $\mathbf{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$. Then $(G, \circ)=\left(\mathbf{Z}_{p}^{*}, *\right)$, the multiplicative group of \mathbf{Z}_{p} (where we exclude 0). Here $e=1 \in \mathbf{Z}_{p}^{*}$, and $a * b \equiv a b \bmod p$. Clearly there the inverses exist since p is a prime.
The above examples are such that $g_{1} \circ g_{2}=g_{2} \circ g_{1}$ for any elements $g_{1}, g_{2} \in G$. Such groups are called abelian.
Theorem 1. Let (G, \circ) be a group. Then
(a) The identity $e \in G$ is unique.
(b) The inverse of each element is unique.
(c) If $g_{1}, g_{2}, h \in G$ and $g_{1} \circ h=g_{2} \circ h$, then $g_{1}=g_{2}$.
(d) If $g_{1}, g_{2}, h \in G$ and $h \circ g_{1}=h \circ g_{2}$, then $g_{1}=g_{2}$.

Exercise. Prove Theorem 1.
Symmetric group. Let $S=\{1, \ldots, n\}$ be the set of first n natural numbers. A bijection map $\sigma: S \rightarrow S$ is called a permutation. We denote $\sigma(i)$ the image of the integer i. It is convenient to describe a permutation as follows:

$$
\sigma=\left(\begin{array}{ccccc}
1 & \cdots & i & \cdots & n \\
\sigma(1) & \cdots & \sigma(i) & \cdots & \sigma(n)
\end{array}\right)
$$

We define the symmetric group S_{n} as the set of all bijections $\{\sigma: S \rightarrow S\}$, where the operation $\sigma \circ \tau$ is given by the composition

$$
\tau \circ \sigma: S \xrightarrow{\sigma} S \xrightarrow{\tau} S
$$

Consider the case $n=4$. Let

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right), \quad \tau=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right)
$$

We see that

$$
\tau: 2 \mapsto 3, \quad \tau: 3 \mapsto 4, \quad \tau: 4 \mapsto 2, \quad \tau: 1 \mapsto 1
$$

We obtain:

$$
\tau \circ \sigma=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{array}\right)
$$

We can easily write the inverse of σ :

$$
\sigma=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{array}\right), \quad \sigma^{-1}=\left(\begin{array}{cccc}
2 & 3 & 4 & 1 \\
1 & 2 & 3 & 4
\end{array}\right), \quad \text { or } \quad \sigma^{-1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{array}\right)
$$

It is easy to compute the product $\sigma \circ \tau$:

$$
\sigma \circ \tau=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{array}\right)
$$

Clearly, $\sigma \circ \tau \neq \tau \circ \sigma$. Thus the groups S_{n} are non-commutative for $n \geq 3$. We also note that there are n ! elements in the group S_{n}.

The groups S_{n} are rather complicated; futhermore, every finite group G could be realized as a subgroup of S_{n} for an appropriate n. We will analyze only basic structural properties of the symmetric groups. Firts, we would like to introduce a geometric way to present elements of S_{n}. Here we display the above elements $\sigma, \tau, \sigma^{-1}, \tau^{-1} \in S_{4}$ and the products $\sigma \circ \tau$ and $\tau \circ \sigma$:

Definition. Let $\left\{n_{1}, \ldots, n_{s}\right\} \subset\{1, \ldots n\}$ be a subset. A map

$$
\sigma:\{1, \ldots n\} \rightarrow\{1, \ldots n\}
$$

is a cycle (denoted by $\left.\left(n_{1}, \ldots, n_{s}\right)\right)$ if

$$
\sigma: n_{1} \mapsto n_{2} \mapsto \cdots n_{s} \mapsto n_{1}, \quad \text { and } \quad \sigma(i)=i, \quad \text { if } i \notin\left\{n_{1}, \ldots, n_{s}\right\} .
$$

Here are the examples of the cycles $(3,4,5) \in S_{5},(1,4,2,6,3) \in S_{6}$:

$(1,4,2,6,3) \in S_{6}$

