Summary on Lecture 2, March 31th, 2015

Languages and Finite State Machines

First examples. (1) The first example is a device known as turnstile: in order to pass through the gate one has to put a quarter coin, then the turnstile unlocks and one can open the gate by pushing a bar. There are two states here: $S=\left\{s_{0}, s_{1}\right\}$, where s_{0} is "the gate is locked" and s_{1} is "the gate is unlocked". The are two inputs: "insert coin" and "push". We denote the inputs as $I=\{c, p\}$. There are two outputs: "Locked" and "Unlocked". We denote the outputs as $O=\{L, U\}$. Here is the diagram describing a design of this device:

Fig. 1. Turnstile machine
Here our finite state machine $M=(S, I, O, \nu, \omega)$, where S, I, O are as above, and $\nu: S \times I \rightarrow S$ and $\omega: S \times I \rightarrow O$ are two functions describing the machine, where ν is the next state function and ω is the output function. Here we have:

$$
\begin{array}{llll}
\nu\left(s_{0}, c\right)=s_{1}, & \nu\left(s_{0}, p\right)=s_{0}, & \nu\left(s_{1}, c\right)=s_{1}, & \nu\left(s_{1}, p\right)=s_{0} \\
\omega\left(s_{0}, c\right)=U, & \nu\left(s_{0}, p\right)=L, & \nu\left(s_{1}, c\right)=U, & \nu\left(s_{1}, p\right)=U
\end{array}
$$

The action of ν is given by arrows in the diagram, and the label over an arrow is a pair "input" and "output".
(2) Next we discuss (briefly) ${ }^{1}$ an easy vending machine which sells two types of products \mathbf{P} and \mathbf{S}. The cost of each product is 20 cents. The machine accepts nickels, dimes and quarters and return necessary change.

The machine has 5 states $s_{0}, s_{1}, s_{2}, s_{3}, s_{4}$ which correspond to how much money were inserted. Namely, the state s_{k} corresponds to $k \phi, k=0,1,2,3,4$. Then the machine has two buttons B_{P} and B_{S} which correspond to the products \mathbf{P} and \mathbf{S}. Thus the set of inputs I we can describe as the set $I=\left\{5,10,25, B_{P}, B_{S}\right\}$. For each input (i.e. inserting nickels, dimes and quarters or pushing the buttons B_{P} or B_{S}), we have to describe the next state of the machine and a relevant output. The set of outputs $O=\{n, 5,10,15,20,25, P, S\}$, where n means nothing, the numbers $5,10,15,20,25$ mean the change given back to a customer and the letters P, S mean releasing the corresponding product \mathbf{P} or \mathbf{S} to the customer. Below is the table describing the functions

$$
\nu: S \times I \rightarrow S \quad \text { and } \quad \omega: S \times I \rightarrow O
$$

	ν				ω					
	$5 ¢$	$10 ¢$	$25 ¢$	B_{P}	B_{S}	$5 ¢$	$10 ¢$	$25 ¢$	B_{P}	B_{S}
s_{0}	s_{1}	s_{2}	s_{4}	s_{0}	s_{0}	n	n	$5 ¢$	n	n
s_{1}	s_{2}	s_{3}	s_{4}	s_{1}	s_{1}	n	n	$10 ¢$	n	n
s_{2}	s_{3}	s_{4}	s_{4}	s_{2}	s_{2}	n	n	$15 ¢$	n	n
s_{3}	s_{4}	s_{4}	s_{4}	s_{3}	s_{3}	n	n	$20 ¢$	n	n
s_{4}	s_{4}	s_{4}	s_{4}	s_{0}	s_{0}	$5 థ$	$10 థ$	$25 ¢$	P	S

Fig. 2 below gives a diagram describing this vending machine.

[^0]

Fig. 2. Vending machine

[^0]: ${ }^{1}$ The textbook discusses this example in more detail.

