
Math 233, Spring 2015 Boris Botvinnik

Summary on Lecture 19, May 18th, 2015

Turing Machines: Busy Beaver Problem.

Let us consider all possible binary Turing Machines which have n states {0, 1 . . . , n−1} , and n is a halting state.
Here we assume that the language is Σ = {0, 1} and that a Turing Machine always halts when it starts at the
blank tape

00
↓
00000.

We denote by Turingn the set of binary Turing Machines with n states halts when it starts at the blank
tape. Then such a machine has 2n instructions of the type aDs , where a ∈ {0, 1} , D ∈ {R,L} , and s ∈
{0, 1, . . . , n − 1, n} (here we include the halting state n). The number of choices for any particular instructions
is 4(n+ 1). Since there are 2n possible instructions, we obtain:

|Turingn| = (4(n+ 1))2n.

Not all of them halt, but clearly there are many binary Turing Machines which which will halt.1

We denote by Turinghn the set of all binary Turing Machines from Turingn which halt. Clearly2

|Turinghn| < |Turingn|.

Now, for each machine M ∈ Turinghn , we denote by b(M) the number of steps before it will halt. Then we take
a maximum:

β(n) = max
M∈Turinghn

b(M).

We obtain a function β : Z+ → Z+ , where n 7→ β(n).

Lemma 1. The function β : Z+ → Z+ is increasing.

Proof. We should show that β(n + 1) > β(n). Indeed, let M ∈ Turinghn be a Turing Machine such that

β(n) = b(M), i.e., M halts in β(n) steps. We use M to construct a Turing Machine M ′ ∈ Turinghn+1 by adding
one more line of new instructions:

0 1
n 1L(n+1) 1L(n+1)

Here (n+ 1) means the halting state. Clearly b(M ′) > β(n). It means that β(n+ 1) > β(n). �

Busy Beaver Problem: Is it possible to compile a computing program which will give the value of β(n) for
every positive integer n?

Theorem. There is no algorithm which will compute the value of β(n) for every positive integer n .

What do we mean here? We do not mean that we cannot compute β(n) for any particular n . What we really
mean that there is no one computational procedure which will produce β(n) for every positive
integer n .

Proof. We assume that there exists an algorithm which computes β(n) for every positive integer n . Then there
exists a Turing Machine Mβ which computes the the value of β(n) for every positive integer n , i.e. Mβ performs
the operation:

0
↓
11 . . . 11︸ ︷︷ ︸

n

0 7→ 0
↓
11 . . . 11︸ ︷︷ ︸

β(n)

0

We assume that Mβ has k states, i.e. Mβ ∈ Turinghk . We would like to use the Turing Machines M2 from
Example 2 which computes the function f2(n) = n + 1 and the Turing Machine M5 from Example 5 which

computes the function f5(n) = 2n . By construction, M2 ∈ Turingh2 and M5 ∈ Turingh9 .

1Prove that for any n there are binary Turing Machines which halt.
2Prove that for any n there are binary Turing Machines which do not halt.

1

2

Now we construct the Turing Machine Si = M2M
i
5Mβ for each positive integer i ≥ 1. The Turing Machine Si

performs the following operations:

0
↓
11 . . . 11︸ ︷︷ ︸

n

0
M27→ 0

↓
11 . . . 11︸ ︷︷ ︸

n+1

0
Mi

57→ 0
↓
11 . . . 11︸ ︷︷ ︸

2i(n+1)

0
Mβ7→ 0

↓
11 . . . 11︸ ︷︷ ︸
β(2i(n+1))

0

The Turing Machine Si will halt after at least β(2i) steps. Indeed, if starts with a blank tape, it need to put
β(2i) 1’s, and it will take at least β(2i) steps.

On the other hand, Si has 2 + 9i+ k states, and we obtain that

β(2i) ≤ β(2 + 9i+ k)

for every i . However, for given k , there exists i such that 2i > 2 + 9i+k .3 Let i0 be such that 2i0 > 2 + 9i0 +k ,
then β(2i0) > β(2 + 9i0 + k) by Lemma 1. We obtain a contradiction. Thus the Turing Machine Mβ does not
exist. �

3Use calculus to prove this.

