Summary on Lecture 19, May 18th, 2015

Turing Machines: Busy Beaver Problem.

Let us consider all possible binary Turing Machines which have n states $\{0, 1, ..., n-1\}$, and n is a halting state. Here we assume that the language is $\Sigma = \{0, 1\}$ and that a Turing Machine always halts when it starts at the blank tape

0000000.

We denote by **Turing**_n the set of binary Turing Machines with n states halts when it starts at the blank tape. Then such a machine has 2n instructions of the type aDs, where $a \in \{0, 1\}$, $D \in \{R, L\}$, and $s \in \{0, 1, ..., n-1, n\}$ (here we include the halting state n). The number of choices for any particular instructions is 4(n + 1). Since there are 2n possible instructions, we obtain:

$$|\mathbf{Turing}_n| = (4(n+1))^{2n}$$

Not all of them halt, but clearly there are many binary Turing Machines which which will halt.¹

We denote by \mathbf{Turing}_n^h the set of all binary Turing Machines from \mathbf{Turing}_n which halt. Clearly²

$$|\mathbf{Turing}_n^n| < |\mathbf{Turing}_n|$$

Now, for each machine $M \in \mathbf{Turing}_n^h$, we denote by b(M) the number of steps before it will halt. Then we take a maximum:

$$\beta(n) = \max_{M \in \mathbf{Turing}_{-}^{h}} b(M).$$

We obtain a function $\beta : \mathbf{Z}_+ \to \mathbf{Z}_+$, where $n \mapsto \beta(n)$.

Lemma 1. The function $\beta : \mathbf{Z}_+ \to \mathbf{Z}_+$ is increasing.

Proof. We should show that $\beta(n+1) > \beta(n)$. Indeed, let $M \in \mathbf{Turing}_n^h$ be a Turing Machine such that $\beta(n) = b(M)$, i.e., M halts in $\beta(n)$ steps. We use M to construct a Turing Machine $M' \in \mathbf{Turing}_{n+1}^h$ by adding one more line of new instructions:

	0	1
n	1L(n+1)	1L(n+1)

Here (n+1) means the halting state. Clearly $b(M') > \beta(n)$. It means that $\beta(n+1) > \beta(n)$.

Busy Beaver Problem: Is it possible to compile a computing program which will give the value of $\beta(n)$ for every positive integer n?

Theorem. There is no algorithm which will compute the value of $\beta(n)$ for every positive integer n.

What do we mean here? We do not mean that we cannot compute $\beta(n)$ for any particular n. What we really mean that there is no one computational procedure which will produce $\beta(n)$ for every positive integer n.

Proof. We assume that there exists an algorithm which computes $\beta(n)$ for every positive integer n. Then there exists a Turing Machine M_{β} which computes the the value of $\beta(n)$ for every positive integer n, i.e. M_{β} performs the operation:

$$0\underbrace{\stackrel{\downarrow}{\underbrace{11}} \dots \underbrace{11}_{n}}_{n} 0 \quad \mapsto \quad 0\underbrace{\stackrel{\downarrow}{\underbrace{11}} \dots \underbrace{11}_{\beta(n)}}_{\beta(n)} 0$$

We assume that M_{β} has k states, i.e. $M_{\beta} \in \mathbf{Turing}_{k}^{h}$. We would like to use the Turing Machines M_{2} from Example 2 which computes the function $f_{2}(n) = n + 1$ and the Turing Machine M_{5} from Example 5 which computes the function $f_{5}(n) = 2n$. By construction, $M_{2} \in \mathbf{Turing}_{2}^{h}$ and $M_{5} \in \mathbf{Turing}_{9}^{h}$.

¹Prove that for any n there are binary Turing Machines which halt.

²Prove that for any n there are binary Turing Machines which do not halt.

Now we construct the Turing Machine $S_i = M_2 M_5^i M_\beta$ for each positive integer $i \ge 1$. The Turing Machine S_i performs the following operations:

$$0\underbrace{\overset{\downarrow}{\underbrace{1}}}_{n} \underbrace{\ldots}_{n} \underbrace{11}_{0} \stackrel{M_{2}}{\mapsto} 0\underbrace{\overset{\downarrow}{\underbrace{1}}}_{n+1} \underbrace{\ldots}_{n+1} \underbrace{11}_{0} \stackrel{M_{5}^{i}}{\mapsto} 0\underbrace{\overset{\downarrow}{\underbrace{1}}}_{2^{i}(n+1)} \underbrace{\ldots}_{11} \underbrace{10}_{\beta(2^{i}(n+1))} \stackrel{M_{\beta}}{\mapsto} 0\underbrace{\overset{\downarrow}{\underbrace{1}}}_{\beta(2^{i}(n+1))} \underbrace{0}_{\beta(2^{i}(n+1))} \underbrace{0}_{$$

The Turing Machine S_i will halt after at least $\beta(2^i)$ steps. Indeed, if starts with a blank tape, it need to put $\beta(2^i)$ 1's, and it will take at least $\beta(2^i)$ steps.

On the other hand, S_i has 2+9i+k states, and we obtain that

$$\beta(2^i) \le \beta(2+9i+k)$$

for every *i*. However, for given *k*, there exists *i* such that $2^i > 2 + 9i + k$.³ Let i_0 be such that $2^{i_0} > 2 + 9i_0 + k$, then $\beta(2^{i_0}) > \beta(2 + 9i_0 + k)$ by Lemma 1. We obtain a contradiction. Thus the Turing Machine M_β does not exist.

 $^{^{3}\}mathrm{Use}$ calculus to prove this.