Summary on Lecture 16, May 11th, 2015

The parity-check and generator matrices. Decoding and more examples.

Recall the general setting. Let n > m, and we consider a function $\alpha : \mathbf{Z}_2^m \to \mathbf{Z}_2^n$ given as $\alpha(\mathbf{w}) = \mathbf{w}G$, where G is $m \times n$ -matrix over \mathbf{Z}_2 , where G has the form $G = [I_m|A]$, where I_m is the identity matrix, and A is $m \times (n-m)$ -matrix over \mathbf{Z}_2 . The code is given then as $C = \alpha(\mathbf{Z}_2^m) \subset \mathbf{Z}_2^n$. We also have the parity check matrix $H = [B, I_{n-m}]$.

We have that if $\mathbf{w} \in \mathbf{Z}_2^m$, then $\mathbf{c} = \alpha(\mathbf{w})$ is such that $H\mathbf{c}^T = \mathbf{0}$. Here is the general result we proved last time:

Lemma 1. Let $G = [I_m|A]$ be a generating matrix and $H = [B|I_{n-m}]$ be the corresponding parity check matrix. Assume that

- (i) the matrix *H* does not contain a zero column;
- (ii) the matrix H does not contain two identical columns.

Then the distance $\delta(\mathbf{x}, \mathbf{y}) > 2$ for all $\mathbf{x}, \mathbf{y} \in C$ with $\mathbf{x} \neq \mathbf{y}$, and all single errors could be detected and corrected.

Now we describe a decoding algorithm. We denote $\mathbf{e}_j = 00 \dots 010 \dots$, where 1 is the *j*-th entry.

Decoding algorithm: Assume we have received a message $\mathbf{v} \in \mathbf{Z}_2^n$.

- (1) If $H\mathbf{v} = \mathbf{0}$, then the message is correct.
- (2) If $H\mathbf{v} = \mathbf{h}_i$, where \mathbf{h}_i is the *j*-th column of *H*, then we decode the message $\mathbf{v} \mapsto \mathbf{v} + \mathbf{e}_i$.
- (3) If (1) and (2) do not apply, we ask to resend the message again since there are at least two errors, and we do not have a reliable way to decode v.

An encoding function $\alpha : \mathbf{Z}_2^m \to \mathbf{Z}_2^n$ given by a generator matrix $G = [I_m|A]$, where $\alpha : \mathbf{w} \to \mathbf{w}G$, is an example of a group code, i.e., when the $\alpha : \mathbf{Z}_2^m \to \mathbf{Z}_2^n$ is a group homomorphism.

Example. We consider the encoding function $\alpha : \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ given by the matrix

 $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}, \qquad \alpha : [w_1, w_2, w_3, w_2] \mapsto [w_1, w_2, w_3, w_4]G$

Then we obtain the parity-check matrix

We notice that if we add any non-zero column to H, than we will have to repeat one of the columns of H. Indeed, there are 3 elements in each column, and there are $2^3 = 8$ binary strings of the length 3. Since H cannot have a zero column, it means that $2^3 - 1 = 7$ is the maximal number of non-zero columns for such a matrix H.

Let $\alpha : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ given by a generator matrix $G = [I_m|A]$, then we denote k = n - m, and then $H = [B|I_k]$. Since H should have different columns, the maximal number of columns in H is $2^k - 1$. In that case B is $k \times (2^k - 1 - k)$ -matrix. In the case when the parity-check matrix H has maximal number of columns, we call H a Hamming matrix.

Examples. With k = 4, a possible Hamming matrix is

With k = 5, a possible Hamming matrix is

	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	1	1	1	1	0	1	1	0	0	0	0
	1	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1	1	1	0	1	1	0	1	0	0	0
H =	0	1	0	0	1	0	0	1	1	0	1	0	0	1	1	0	1	1	0	1	1	1	0	0	1	1	0	0	1	0	0
	0	0	1	0	0	1	0	1	0	1	0	1	0	1	0	1	1	0	1	1	1	0	1	1	1	1	0	0	0	1	0
	0	0	0	1	0	0	1	0	1	1	0	0	1	0	1	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	1

Clearly, we can use any of these matrices for a parity-check.

Lemma 2. Assume $G = [I_m|A]$ is a generator matrix, and $H = [B|I_k]$ is the corresponding parity-check matrix with maximal number of columns $2^k - 1 - k$. Let $C = \alpha(\mathbf{Z}_2^m)$. Then there exist two strings $\mathbf{x}, \mathbf{y} \in C$ such that $\delta(\mathbf{x}, \mathbf{y}) = 3$.

Proof. Let $\alpha : \mathbb{Z}_2^m \to \mathbb{Z}_2^n$ be the corresponding encoding function. We have that n - m = k, and $n = 2^k - 1$. Thus $m = 2^k - 1 - k$. Let $\mathbf{x} \in C = \alpha(\mathbb{Z}_2^m)$. We consider a ball $B_1(\mathbf{x})$. Since there are exactly $n = 2^k - 1$ strings $\mathbf{z} \in \mathbb{Z}_2^n$ such that $\delta(\mathbf{x}, \mathbf{z}) = 1$, the ball $B_1(\mathbf{x})$ contains $n + 1 = 2^k - 1 + 1 = 2^k$ elements.

Now let $\mathbf{x}, \mathbf{y} \in C$. We choose any two elements $\mathbf{z} \in B_1(\mathbf{x})$ and $\mathbf{u} \in B_1(\mathbf{y})$. From Lemma 1, $\delta(\mathbf{x}, \mathbf{y}) \geq 3$. We notice:

 $3 \le \delta(\mathbf{x}, \mathbf{y}) \le \delta(\mathbf{x}, \mathbf{z}) + \delta(\mathbf{z}, \mathbf{u}) + \delta(\mathbf{u}, \mathbf{y}) \le 1 + \delta(\mathbf{z}, \mathbf{u}) + 1.$

We obtain that $\delta(\mathbf{z}, \mathbf{u}) \geq 1$. In particular, $\mathbf{z} \neq \mathbf{u}$, and $B_1(\mathbf{x}) \cap B_1(\mathbf{y}) = \emptyset$.

Since the balls $B_1(\mathbf{y})$ are disjoint, and we have 2^m elements in C, we obtain that the union

$$\bigcup_{\mathbf{x}\in C}B_1(\mathbf{x})$$

contains $2^m \cdot 2^k = 2^{m+k} = 2^n$ elements. This means that

$$\bigcup_{\mathbf{x}\in C} B_1(\mathbf{x}) = \mathbf{Z}_2^n$$

Now we choose any $\mathbf{x} \in C$ and take $\mathbf{e}_{ij} \in \mathbf{Z}_2^n$, a binary sequence with 1's in *i*-th and *j*-th places, and zeros otherwise. Let $\mathbf{z} = \mathbf{x} + \mathbf{e}_{ij}$. Clearly, $\delta(\mathbf{x}, \mathbf{z}) = 2$, so $\mathbf{z} \notin B_1(\mathbf{x})$. However, $\mathbf{z} \in B_1(\mathbf{y})$ for some $\mathbf{y} \in C$. Assume that $\mathbf{z} = \mathbf{y}$, then we would have that $\mathbf{z} \in C$, but then it would mean that $\delta(\mathbf{x}, \mathbf{z}) \ge 3$ by Lemma 1. Contradiction. Then we have that $\mathbf{z} \neq \mathbf{y}$, and $\delta(\mathbf{y}, \mathbf{z}) = 1$. Then we have

$$\delta(\mathbf{x}, \mathbf{y}) \le \delta(\mathbf{x}, \mathbf{z}) + \delta(\mathbf{z}, \mathbf{y}) = 2 + 1 = 3$$

We obtain that $\delta(\mathbf{x}, \mathbf{y}) \leq 3$, and Lemma 1 gives us that $\delta(\mathbf{x}, \mathbf{y}) \geq 3$. This means $\delta(\mathbf{x}, \mathbf{y}) = 3$.