Summary on Lecture 15, May 8th, 2015

The parity-check and generator matrices.

Example. We consider the encoding function $\alpha: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$ given by the matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}, \quad \alpha : [w_1, w_2, w_3] \mapsto [w_1, w_2, w_3]G$$

Since $\mathbb{Z}_2^3\{000,001,010,011,100,101,110,111\}$, we compute:

$$C = \alpha(\mathbf{Z}_2^3) = \{000000, 001101, 010011, 011110, 100110, 101011, 110101, 111000\}.$$

We notice that $\delta(x,y) > 2$ for all $x,y \in C$. It means that all single errors could be detected and corrected.

We examine closely the homomorphism $\alpha: \mathbb{Z}_2^3 \to \mathbb{Z}_2^6$:

$$\alpha: [w_1,w_2,w_3] \left[\begin{array}{cccccc} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{array} \right] = [w_1,w_2,w_3,w_4,w_5,w_6],$$

where

$$\begin{cases} w_4 = w_1 + w_3 \\ w_5 = w_1 + w_2 \\ w_6 = w_2 + w_3 \end{cases} \text{ or } \begin{cases} w_1 + w_3 + w_4 = 0 \\ w_1 + w_2 + w_5 = 0 \\ w_2 + w_3 + w_6 = 0 \end{cases}$$

Here we keep in mind that we work mod 2. In matrix notations, we have

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} [w_1, w_2, w_3, w_4, w_5, w_6]^T = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We denote:

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} = [B|I_3], \text{ where } B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

We notice that

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix} = [I_3|A], \text{ where } I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

We see that $B = A^T$. Let $\mathbf{c} \in C$, then

$$H\mathbf{c}^T = \left[egin{array}{c} 0 \ 0 \ 0 \end{array}
ight].$$

Let $\mathbf{c} = 100110$, and $\tau(\mathbf{c}) = 101110$. Then we can check

$$H\tau(\mathbf{c})^T = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

We notice that $H\tau(\mathbf{c})^T$ is exactly the third column of the matrix H. We also have that $\tau(\mathbf{c}) = 101110 = \mathbf{c} + \mathbf{e}$, where $\mathbf{e} = 001000$. We have:

$$H\tau(\mathbf{c})^T = H(\mathbf{c} + \mathbf{e})^T = H\mathbf{c}^T + H\mathbf{e}^T = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}.$$

We see that we can see immediately that the third digit of $\tau(\mathbf{c})$ should be corrected to recover \mathbf{c} .

Matrix Codes: the general case.

Let n > m, and we consider a function $\alpha : \mathbf{Z}_2^m \to \mathbf{Z}_2^n$ given as $\alpha(\mathbf{w}) = \mathbf{w}G$, where G is $m \times n$ -matrix over \mathbf{Z}_2 . Furthemore, we assume that G has the form $G = [I_m|A]$, where I_m is the identity matrix, and A is $m \times (n-m)$ -matrix over \mathbf{Z}_2 . Then the matrix G is called a *generating matrix*. The code is given then as $C = \alpha(\mathbf{Z}_2^m) \subset \mathbf{Z}_2^m$. The matrix $H = [B, I_{n-m}]$, where $B = A^T$ is called the *parity check matrix*.

We have that if $\mathbf{w} = [w_1 \dots w_m]$, then

$$\alpha: [w_1 \dots w_m] \mapsto [w_1 \dots w_m \ w_{m+1} \dots w_n],$$

where $H[w_1 \dots w_m \ w_{m+1} \dots w_n]^T = \mathbf{0}$, where $\mathbf{0}$ is (n-m)-dimensional column zero vector.

Lemma 1. Let $G = [I_m|A]$ be a generating matrix and $H = [B|I_{n-m}]$ be the corresponding parity check matrix. Assume that

- (i) the matrix H does not contain a zero column;
- (ii) the matrix H does not contain two identical columns.

Then the distance $\delta(\mathbf{x}, \mathbf{y}) > 2$ for all $\mathbf{x}, \mathbf{y} \in C$ with $\mathbf{x} \neq \mathbf{y}$, and all single errors could be detected and corrected.

Proof. It is enough to show that a distance between different strings in C is greater than two.

Assume we have two strings $\mathbf{x}, \mathbf{y} \in C$ with $\delta(\mathbf{x}, \mathbf{y}) = 1$. Then $\mathbf{y} = \mathbf{x} + \mathbf{e}$, where \mathbf{e} is a string with just one entry 1 and all other entries are zeros. Say, we have $\mathbf{e} = [0 \dots 0 \ 1 \ 0 \dots 0]$, where 1 is the k-th entry. Then

$$\mathbf{0} = H\mathbf{y}^T = H\mathbf{x}^T + H\mathbf{e}^T = H\mathbf{e}^T,$$

which is the k-th column of the matrix H. However, the matrix H does not have a zero column. Contradiction.

Assume we have two strings $\mathbf{x}, \mathbf{y} \in C$ with $\delta(\mathbf{x}, \mathbf{y}) = 2$. Then $\mathbf{y} + \mathbf{e}_1 = \mathbf{x} + \mathbf{e}_2$, where \mathbf{e}_1 and \mathbf{e}_2 are strings with just one entry 1 and all other entries are zeros. Then we have that $\mathbf{y} = \mathbf{x} + \mathbf{e}_1 + \mathbf{e}_2$, and we check:

$$\mathbf{0} = H\mathbf{y}^T = H\mathbf{x}^T + H\mathbf{e}_1^T + H\mathbf{e}_2^T = H\mathbf{e}_1^T + H\mathbf{e}_2^T.$$

We obtain that $H\mathbf{e}_1^T = H\mathbf{e}_2^T$: we remember that we work mod 2. However, the matrix H does not have equal columns. Contradiction.