Summary on Lecture 13, May 1st, 2015

Powers and roots $\bmod p_{1} p_{2}$.
Last time we proved the following result:
Lemma 1. Let p be a prime, and e be such that $\operatorname{gcd}(e, p-1)=1$, giving us d be such that de $\equiv 1 \bmod (p-1)$. Then the congruence $x^{e} \equiv c \bmod p$ has a unique solution $x=c^{d} \bmod p$.

Now let p_{1}, p_{2} be distinct primes. We will analyze how to solve the equation $x^{e} \equiv c \bmod p_{1} p_{2}$. Last time we proved the following:

Theorem 2. Let p_{1} and p_{2} be distinct primes, and let $d=\operatorname{gcd}\left(p_{1}-1, p_{2}-1\right)$. Assume an interger a is such that $\operatorname{gcd}\left(a, p_{1} p_{2}\right)=1$. Then $a^{\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d}} \equiv 1 \bmod p_{1} p_{2}$.

Here is the resut we need:
Lemma 2. Let p_{1}, p_{2} be distinct primes, and let $e \geq 1$ be an integer satisfying $\operatorname{gcd}\left(e,\left(p_{1}-1\right)\left(p_{2}-1\right)\right)=1$, and let d be such that $d \cdot e \equiv 1 \bmod p_{1} p_{2}$. Then the congruence $x^{e} \equiv c \bmod p_{1} p_{2}$ has a unique solution $x=c^{d}$ $\bmod p_{1} p_{2}$.
Proof. For simplicity, we assume that $\operatorname{gcd}\left(c, p_{1} p_{2}\right)=1$. Then since $\operatorname{gcd}\left(e,\left(p_{1}-1\right)\left(p_{2}-1\right)\right)=1$, we find d such that $d \cdot e=1+k\left(p_{1}-1\right)\left(p_{2}-1\right)$. Now we check that c^{d} is a solution of the congruence $x^{e} \equiv c$ mod $p_{1} p_{2}$:

$$
\begin{aligned}
\left(c^{d}\right)^{e} & =c^{d e} & & \\
& =c^{1+k\left(p_{1}-1\right)\left(p_{2}-1\right)} & & \\
& =c \cdot\left(c^{\left(p_{1}-1\right)\left(p_{2}-1\right)}\right)^{k} & & \\
& \equiv c \cdot 1^{k} & & \bmod \left(p_{1} p_{2}\right) \\
& \equiv c & & \bmod \left(p_{1} p_{2}\right)
\end{aligned}
$$

Now we check that such a solution is unique. Assume $x=u$ is a solution of the congruence $x^{e} \equiv c \bmod p_{1} p_{2}$. Then that c^{d} is a solution of the congruence $x^{e} \equiv c \bmod p_{1} p_{2}$:

$$
\begin{aligned}
u & =u^{d e-k\left(p_{1}-1\right)\left(p_{2}-1\right)} \\
& =\left(u^{e}\right)^{d}\left(u^{\left(p_{1}-1\right)\left(p_{2}-1\right)}\right)^{-k}
\end{aligned}
$$

$$
=c^{d} \cdot 1^{-k} \quad \bmod \left(p_{1} p_{2}\right)
$$

$$
\equiv c^{d} \quad \bmod \left(p_{1} p_{2}\right)
$$

The case when $\operatorname{gcd}\left(c, p_{1} p_{2}\right)>1$ will be given as exercise.
Example. Let $p_{1}=229, p_{2}=281, N=p_{1} p_{2}=229 \cdot 281=64,349$. We solve the congruence

$$
x^{17389} \equiv 43,947 \bmod 64,349
$$

First, we have to solve the congruence

$$
d \cdot 17,389 \equiv 1 \bmod 63,840
$$

where $63,840=\left(p_{1}-1\right)\left(p_{2}-1\right)=228 \cdot 280$. We find $d \equiv 53,509 \bmod 63,840$. Then Lemma 2 gives us the solution

$$
x \equiv 43,947^{53,509} \equiv 14,458 \bmod 64,349 .
$$

The RSA public key cryptosystem

Now we can describe the RSA public key cryptosystem. The term RSA is named after its inventors Ron Rivest (MIT), Adi Shamir (Weizmann Institute, Israel), Leonard Adleman (MIT). They first described this algorithm in 1977 (when all of them were in their twenties).

Assume that Bob and Alice have to exchange a sensitive information over insecure communication line. Here what they do

- Bob chooses p_{1}, p_{2} be two large primes, $N=p_{1} \cdot p_{2}$ and an integer e such that $\operatorname{gcd}\left(e,\left(p_{1}-1\right)\left(p_{2}-1\right)\right)=1$. The pair (N, e) is a public key which is publicly available, in particular to an unfriendly person Eve.
- Now Alice would like to send a message, an integer m to Bob. She encrypts m be computing the quantity $c \equiv m^{e} \bmod N$. The quantity c is her ciphertext which she sends to Bob over an open communication line.
- Then Bob receives the message and easily decodes it by solving the congruence $x^{e} \equiv c \bmod N$ since he knows the factorization $N=p_{1} p_{2}$ and thus he can find d such that $d \cdot e \equiv 1 \bmod \left(p_{1}-1\right)\left(p_{2}-1\right)$, and then just compute $x=c^{d} \bmod N$.
- On the other hand, Eve does not know how to decode the message since it is very difficult task to factor given integer N into a product of two large primes.

Remark. As we have seen, Bob's public key includes the number $N=p_{1} p_{2}$, which is a product of two secret primes p_{1} and p_{2}. Clearly if Eve knows the value of $\left(p_{1}-1\right)\left(p_{2}-1\right)$, then she can solve the congruence $x^{e} \equiv c$ $\bmod N$, and thus can decrypt messages sent to Bob. Expanding $\left(p_{1}-1\right)\left(p_{2}-1\right)$ gives

$$
\left(p_{1}-1\right)\left(p_{2}-1\right)=p_{1} p_{2}-p_{1}-p_{2}+1=N-\left(p_{1}+p_{2}\right)+1
$$

Since Bob has published the value of N, so Eve already knows N. Thus if Eve can determine the value of the sum $p_{1}+p_{2}$, then the above identity gives her the value of $\left(p_{1}-1\right)\left(p_{2}-1\right)$, which enables her to decrypt messages.

