Summary on Lecture 12, April 28th, 2015

Generalization of the Fermat's Little Theorem.

According to the Fermat's Little Theorem, for given prime p and any integer $a, a^{p-1} \equiv 1$ unless a is divisible by p. We would like to investigate what happens with the powers $\bmod n=p_{1} \cdot p_{2}$ (product of two primes).
Example. Let $n=15=3 \cdot 5$. Then we have

$$
\begin{aligned}
& a^{4} \equiv 1 \bmod \quad 15 \quad \text { if } a=1,2,4,7,8,11,13,14, \\
& a^{4} \not \equiv 1 \bmod \quad 15 \quad \text { if } a=3,5,6,9,10,12 .
\end{aligned}
$$

Check it. Why do we have $a^{4} \not \equiv 1 \bmod 15$ for particular values $a=3,5,6,9,10,12$? We can notice that all these numbers have common factors with 15. This suggest that some version of the the Fermat's Little Theorem should hold for a product of two primes. Here is the result which plays a fundamental role for the RSA public key cryptosystem. This theorem is also known as the Euler formula for the product of two primes.

Theorem 2. Let p_{1} and p_{2} be distinct primes, and let $d=\operatorname{gcd}\left(p_{1}-1, p_{2}-1\right)$. Assume an interger a is such that $\operatorname{gcd}\left(a, p_{1} p_{2}\right)=1$. Then $a^{\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d}} \equiv 1 \bmod p_{1} p_{2}$.

Proof. By assumption, d has to divide $p_{2}-1$, and $\operatorname{gcd}\left(a, p_{1}\right)=1$. In particular, we have that $a^{\left(p_{1}-1\right)} \equiv 1 \bmod$ p_{1} by the Fermat's Little Theorem. Then we have:

$$
\begin{aligned}
a^{\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d}} & =\left(a^{\left(p_{1}-1\right)}\right)^{\frac{\left(p_{2}-1\right)}{d}} \\
& \equiv 1^{\frac{\left(p_{2}-1\right)}{d}} \bmod p_{1} \\
& \equiv 1 \quad \bmod p_{1}
\end{aligned}
$$

Similarly we prove that $a^{\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d}} \equiv 1 \bmod p_{2}$. It means that the difference

$$
a^{\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d}}-1
$$

is divisible by both p_{1} and p_{2}. Hence it divisible by $p_{1} p_{2}$, or $a^{\frac{\left(p_{1}-1\right)\left(p_{2}-1\right)}{d}}-1 \equiv 0 \bmod p_{1} p_{2}$.
Now we are almost ready to describe the RSA public key cryptosystem. Two more theoretical exercises to go.
First, let us try to solve an equation of the form $x^{e} \equiv c \bmod p$, where x is an unknown, e, c are known integers, and p is a prime. We recall that if e is such number that $\operatorname{gcd}(e, p-1)=1$, then there exists d such that

$$
d e \equiv 1 \bmod p-1
$$

Lemma 1. Let p be a prime, and e be such that $\operatorname{gcd}(e, p-1)=1$, giving us d be such that de $\equiv 1 \bmod (p-1)$. Then the congruence $x^{e} \equiv c \bmod p$ has a unique solution $x=c^{d} \bmod p$.

Proof. First, assume that $c \equiv 0 \bmod p$. Then $x \equiv 0 \bmod p$ is the unique solution. Assume that $c \not \equiv 0 \bmod p$. The congruence $d e \equiv 1 \bmod (p-1)$ means that there exists k such that $d e=1+k(p-1)$. Then we have

$$
\begin{aligned}
\left(c^{d}\right)^{e} & =c^{d e} \\
& =c^{1+k(p-1)} \\
& =c \cdot\left(c^{(p-1)}\right)^{k} \\
& \equiv c \cdot 1^{k} \bmod p \\
& \equiv c \quad \bmod p
\end{aligned}
$$

We see that $x=c^{d}$ solves the conguence $x^{e} \equiv c$.
Exercise. Prove that the solution $x=c^{d} \bmod p$ is unique.
Example. We solve $x^{1583} \equiv 4714 \bmod 7919$, where 7919 is prime. For this, we solve the congruence $d \cdot 1583 \equiv 1$ \bmod 7918. We find $d \equiv 5277 \bmod 7918$. Then we use Lemma 1 to find $x \equiv 4714^{5277} \bmod 7919$. We find $x \equiv 6059 \bmod 7919$.

