Languages and Finite State Machines

Warm-up: Languages. Let $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ be an alphabet. We denote by Σ^{n} the set of words (strings) over Σ of length n. There is a special empty string which is denoted by λ. We accept the convention: $\Sigma^{0}=\{\lambda\}$. We will use the notations:

$$
\Sigma^{+}=\bigcup_{n>0} \Sigma^{n}, \quad \Sigma^{*}=\bigcup_{n \geq 0} \Sigma^{n} .
$$

We say that a subset $A \subset \Sigma^{*}$ is a language. Two words (strings) $w=x_{1} \ldots x_{n}, w^{\prime}=x_{1}^{\prime} \ldots x_{n^{\prime}}^{\prime}$ in the laguage A are equal iff $n=n^{\prime}$ and $x_{i}=x_{i}^{\prime}$ for each $i=1, \ldots, n$.

If $w=x_{1} \ldots x_{n}$ is a word, then the length $\|w\|=n$. We also define $\|\lambda\|=0$. There is an obvious concatenation of words: if $w=x_{1} \ldots x_{n}, w^{\prime}=x_{1}^{\prime} \ldots x_{n^{\prime}}^{\prime}$ then

$$
w w^{\prime}=x_{1} \ldots x_{n} x_{1}^{\prime} \ldots x_{n^{\prime}}^{\prime}, \quad\left\|w w^{\prime}\right\|=\|w\|+\left\|w^{\prime}\right\|
$$

We accept the convention: $w \lambda=\lambda w=w$. In particular, $\lambda \lambda=\lambda$. For each word $w \in A$, we have that its power w^{ℓ} is well-defined.

Let $v=w w^{\prime}$ be a concatenation of two words. Then we say that w is proper prefix of v if $w \neq \lambda$, and w^{\prime} is proper suffix of v if $w^{\prime} \neq \lambda$. In the case if the words w or w^{\prime} could be empty, we call them prefix of v or suffix of v respectively.

We have seen many examples of alphabets and languages. Here some of them:

- Binary alphabet $\Sigma=\{0,1\}, A^{*}=\Sigma^{*}$.
- English Language $\Sigma=\{a, b, \ldots, z, A, B, \ldots, Z\}, A=\Sigma^{*}$.
- It is known that DNA is constructed from four main types of molecules: adenine (A), cytosine (C), guanine (G), and thymine (T). Sequences of these molecules, and so strings over the alphabet $\Sigma=$ $\{A, C, G, T\}$ form the basis of genes.
Let $A, B \subset \Sigma^{*}$ be two languages. We can form new language $A B$, the conteniation of A and B, as follows:

$$
A B=\{a b \mid a \in A, \quad b \in B\}
$$

Example. Let $\Sigma=\{x, y, z\}$, and $A=\{x, x y, z\}, B=\{\lambda, y\}$. Then

$$
\begin{aligned}
& A B=\{x, x y, z, x y y, z y\} \\
& B A=\{x, x y, z, y x, y x y, y z\}
\end{aligned}
$$

We have that $|A B| \neq|B A|$. In general, one can show that $|A B| \leq|A| \cdot|B|$.
Theorem 1. Let $A, B, C \subset \Sigma^{*}$ be languages. Then
(a) $A\{\lambda\}=\{\lambda\} A=A$
(b) $(A B) C=A(B C)$
(c) $A(B \cup C)=A B \cup A C$
(d) $(B \cup C) A=B A \cup C A$
(e) $A(B \cap C)=A B \cap A C$
(f) $\quad(B \cap C) A=B A \cap C A$

Exercise. Prove Theorem 1.
For a language $A \subset \Sigma^{*}$, we also define its powers A^{ℓ} :

$$
A^{0}=\{\lambda\}, \quad A^{1}=A, \quad A^{\ell+1}=\left\{a b \mid a \in A, b \in A^{\ell}\right\}
$$

We also define its closures A^{+}and A^{*} as follows:

$$
A^{+}=\bigcup_{\ell>0} A^{\ell}, \quad A^{*}=\bigcup_{\ell \geq 0} A^{\ell}
$$

The languages A^{+}and A^{*} are called positive closure and Kleene closure of A respectively.
Examples. We consider two languages over $\Sigma=\{0,1\}$:
(1) The language $\{1\}\{0,1\}^{*}$ represents binary natural numbers.
(2) Binary strings containing the substring 1011 can be represented by the language

$$
\{0,1\}^{*} 1011\{0,1\}^{*}
$$

More examples. Let $\Sigma=\{x, y\}$.
(1) Let $A=\{x x, x y, y x, y y\}$. Then A^{*} is the language over Σ, in which all words have even length.
(2) Let $A=\{x x, x y, y x, y y\}$ be as above, and $B=\{x, y\}$. Then $B A^{*}$ is the language Σ, in which all words have odd length.
(3) The language $\{x\}\{x, y\}^{*}$ over Σ contains all words from Σ^{*} for which x is a prefix, and the language $\{x\}\{x, y\}^{+}$over Σ contains all words from Σ^{*} for which x is a proper prefix,
(4) The language $\{x, y\}^{*}\{y y\}$ over Σ contains all words from Σ^{*} for which $y y$ is a suffix, and the language $\{x, y\}^{+}\{y y\}$ over Σ contains all words from Σ^{*} for which $y y$ is a proper suffix.
(5) The language $\{x, y\}^{*}\{x x y y\}\{x, y\}^{*}$ over Σ consists of all words from Σ^{*} which contain a substring xxyy.
(6) The language $\{x\}^{*}\{y\}^{*}$ over Σ consists of all words from Σ^{*} which have some number (possibly zero) of x following by some number (possibly zero) of y. Notice that $\{x\}^{*}\{y\}^{*} \subset\{x, y\}^{*}$, but $\{x\}^{*}\{y\}^{*} \neq\{x, y\}^{*}$. Indeed, $w=x y x$ is in $\{x, y\}^{*}$, but not in $\{x\}^{*}\{y\}^{*}$.

Lemma 1. Let $A, B \subset \Sigma^{*}$ be two languages. If $A \subset B$, then $A^{\ell} \subset B^{\ell}$ for each $\ell \geq 0$.
Exercise. Prove Lemma 1.
Theorem 2. Let $A, B \subset \Sigma^{*}$ be languages. Then
(a) $A \subset A B^{*}$
(b) $A \subset B^{*} A$
(c) $A \subset B \Rightarrow A^{+} \subset B^{+}$
(d) $A \subset B \Rightarrow A^{*} \subset B^{*}$
(e) $A A^{*}=A^{*} A=A^{+}$
(f) $\quad A^{*} A^{*}=A^{*}=\left(A^{*}\right)^{*}=\left(A^{*}\right)^{+}=\left(A^{+}\right)^{*}$
(g) $(A \cup B)^{*}=\left(A^{*} \cup B^{*}\right)^{*}=\left(A^{*} B^{*}\right)^{*}$.

Exercise. Prove Theorem 2.

