Summary on Lecture 1, March 30th, 2015

Languages and Finite State Machines

Warm-up: Languages. Let $\Sigma = \{a_1, \ldots, a_k\}$ be an alphabet. We denote by Σ^n the set of words (strings) over Σ of length n. There is a special *empty string* which is denoted by λ . We accept the convention: $\Sigma^0 = \{\lambda\}$. We will use the notations:

$$\Sigma^+ = \bigcup_{n>0} \Sigma^n, \quad \Sigma^* = \bigcup_{n\geq 0} \Sigma^n.$$

We say that a subset $A \subset \Sigma^*$ is a *language*. Two words (strings) $w = x_1 \dots x_n$, $w' = x'_1 \dots x'_{n'}$ in the laguage A are equal iff n = n' and $x_i = x'_i$ for each $i = 1, \dots, n$.

If $w = x_1 \dots x_n$ is a word, then the length ||w|| = n. We also define $||\lambda|| = 0$. There is an obvious concatenation of words: if $w = x_1 \dots x_n$, $w' = x'_1 \dots x'_{n'}$ then

$$ww' = x_1 \dots x_n x'_1 \dots x'_{n'}, \quad ||ww'|| = ||w|| + ||w'||.$$

We accept the convention: $w\lambda = \lambda w = w$. In particular, $\lambda \lambda = \lambda$. For each word $w \in A$, we have that its power w^{ℓ} is well-defined.

Let v = ww' be a concatenation of two words. Then we say that w is proper prefix of v if $w \neq \lambda$, and w' is proper suffix of v if $w' \neq \lambda$. In the case if the words w or w' could be empty, we call them prefix of v or suffix of v respectively.

We have seen many examples of alphabets and languages. Here some of them:

- Binary alphabet $\Sigma = \{0, 1\}, A^* = \Sigma^*$.
- English Language $\Sigma = \{a, b, \dots, z, A, B, \dots, Z\}, A = \Sigma^*$.
- It is known that DNA is constructed from four main types of molecules: adenine (A), cytosine (C), guanine (G), and thymine (T). Sequences of these molecules, and so strings over the alphabet $\Sigma = \{A, C, G, T\}$ form the basis of genes.

Let $A, B \subset \Sigma^*$ be two languages. We can form new language AB, the conteniation of A and B, as follows:

$$AB = \{ ab \mid a \in A, b \in B \}.$$

Example. Let $\Sigma = \{x, y, z\}$, and $A = \{x, xy, z\}$, $B = \{\lambda, y\}$. Then

$$\begin{array}{rcl} AB &=& \{x,xy,z,xyy,zy\},\\ BA &=& \{x,xy,z,yx,yxy,yz\}. \end{array}$$

We have that $|AB| \neq |BA|$. In general, one can show that $|AB| \leq |A| \cdot |B|$.

Theorem 1. Let $A, B, C \subset \Sigma^*$ be languages. Then

(a)
$$A{\lambda} = {\lambda}A = A$$
 (b) $(AB)C = A(BC)$ (c) $A(B \cup C) = AB \cup AC$

(d)
$$(B \cup C)A = BA \cup CA$$
 (e) $A(B \cap C) = AB \cap AC$ (f) $(B \cap C)A = BA \cap CA$

Exercise. Prove Theorem 1.

For a language $A \subset \Sigma^*$, we also define its powers A^{ℓ} :

$$A^{0} = \{\lambda\}, \quad A^{1} = A, \quad A^{\ell+1} = \{ ab \mid a \in A, b \in A^{\ell} \}.$$

We also define its closures A^+ and A^* as follows:

$$A^+ = \bigcup_{\ell \ge 0} A^\ell, \quad A^* = \bigcup_{\ell \ge 0} A^\ell.$$

The languages A^+ and A^* are called *positive closure* and *Kleene closure* of A respectively. **Examples.** We consider two languages over $\Sigma = \{0, 1\}$:

- (1) The language $\{1\}\{0,1\}^*$ represents binary natural numbers.
- (2) Binary strings containing the substring 1011 can be represented by the language

$$\{0,1\}^*1011\{0,1\}^*$$

More examples. Let $\Sigma = \{x, y\}$.

- (1) Let $A = \{xx, xy, yx, yy\}$. Then A^* is the language over Σ , in which all words have even length.
- (2) Let $A = \{xx, xy, yx, yy\}$ be as above, and $B = \{x, y\}$. Then BA^* is the language Σ , in which all words have odd length.
- (3) The language $\{x\}\{x, y\}^*$ over Σ contains all words from Σ^* for which x is a prefix, and the language $\{x\}\{x, y\}^+$ over Σ contains all words from Σ^* for which x is a proper prefix,
- (4) The language $\{x, y\}^* \{yy\}$ over Σ contains all words from Σ^* for which yy is a suffix, and the language $\{x, y\}^+ \{yy\}$ over Σ contains all words from Σ^* for which yy is a proper suffix.
- (5) The language $\{x, y\}^* \{xxyy\} \{x, y\}^*$ over Σ consists of all words from Σ^* which contain a substring xxyy.
- (6) The language {x}*{y}* over Σ consists of all words from Σ* which have some number (possibly zero) of x following by some number (possibly zero) of y. Notice that {x}*{y}* ⊂ {x, y}*, but {x}*{y}* ≠ {x, y}*. Indeed, w = xyx is in {x, y}*, but not in {x}*{y}*.

Lemma 1. Let $A, B \subset \Sigma^*$ be two languages. If $A \subset B$, then $A^{\ell} \subset B^{\ell}$ for each $\ell \geq 0$.

Exercise. Prove Lemma 1.

Theorem 2. Let $A, B \subset \Sigma^*$ be languages. Then

- (a) $A \subset AB^*$ (b) $A \subset B^*A$ (c) $A \subset B \Rightarrow A^+ \subset B^+$
- (d) $A \subset B \Rightarrow A^* \subset B^*$ (e) $AA^* = A^*A = A^+$ (f) $A^*A^* = A^* = (A^*)^* = (A^*)^+ = (A^+)^*$
- (g) $(A \cup B)^* = (A^* \cup B^*)^* = (A^*B^*)^*.$

Exercise. Prove Theorem 2.