REVIEW PROBLEM FOR THE SECOND MIDTERM

1. An algebraic expression is written in the reverse Polish notations as follows:

$$x7 + 3 \land x1 - x * /1x2 \land 5 + /+$$

- (a) Find a binary tree representing this algebraic expression.
- (b) Find this algebraic expression.
- (c) Write this expression in the Polish notations.
- 2. Describe the most effective way how to merge together the ordered lists L_1 , L_2 , L_3 , L_4 , L_5 , L_6 , L_7 , L_8 with the lengths $|L_1| = 10$, $|L_2| = 15$, $|L_3| = 7$, $|L_4| = 27$, $|L_5| = 37$, $|L_6| = 28$, $|L_7| = 20$, $|L_8| = 9$.
- **3.** Consider the Huffman Algorithm:

```
Huffman(L = \{w_1, w_2, \dots, w_k\}):
{Input: A list of weights: L = \{w_1, w_2, \dots, w_k\}, k \ge 2}
{Output: an optimal tree T(L)}
if k = 2 then
return the tree
```

else

Choose two smallest weights u and v of L. Make a list L' by removing the elements u and v and adding the element u+v. Let $T(L'):= \mathbf{Huffman}\left(L'\right)$. Form a tree T(L) from T(L') by replacing a leaf of weight u+v by a subtree with two leaves of weights u and v.

return T(L).

Prove that the algorithm **Huffman**(L) does produce an optimal binary tree for the weights $L = \{w_1, w_2, \dots, w_k\}$.

- 4. Here is the prefix code: $\{00, 10, 11, 011, 111, 1100, 1101, 0100, 0101\}$
 - (a) Construct a binary tree whose leaves represent this binary code.
 - (b) Decode the following message:

1100110100000111110101110110

using the following symbols:

00	10	11	011	111	0100	0101	1100	1101
Ν	U	Н	Κ)	А	Y	Т	0

- 5. Let $\Sigma = \{0, 1\}$ and A_n be the set of binary strings of length n which do not contain the string 00. Find and solve a recurrence relation for $a_n = |A_n|$.
- 6. Prove that if a finite graph G = (V, E) in which each vertex has degree at least 2 contains a cycle.
- 7. Prove that if a finite graph G = (V, E) is a tree, then |V| = |E| + 1.
- 8. Let K_n be a complete graph with n vertices. For which n the graph K_n admits an Euler circuit? Explain in detail.
- **9.** Construct an optimal tree for the following weights {2,3,5,7,11,13,17,19,23,29,31,37,41,43}.
- 10. Prove that any tree has at least two leaves.

- 11. Let T = (V, E) be a tree. Prove that for any two distinct vertices $v, u \in V$ there is a unique path connecting them.
- 12. Let G = (V, G) be a graph with no loops and parallel edges, and $|V| = n \ge 3$. Prove that if $\deg(v) + \deg(w) \ge n$ for each pair of vertices v and w which are not connected by an edge, then G has a Hamiltonian cycle.
- 13. Give the postorder and preorder listings for the following tree:

- 14. Let T be a complete binary tree.
 - (a) Prove that it has odd number of vertices.
 - (b) Assume the height of T is h, and T has ℓ leaves. Prove that $\ell \leq 2^h$.
- **15.** Write the expression $(x 1)(x^5 + x^4 + x^3 + x^2 + x + 1) (x^6 1)$ in Polish notations.
- **16.** Let G = (V, E) be a finite graph.
 - (a) Assume that |V| = |E| + 1 and that G is connected. Prove G is a tree.
 - (b) Assume that |V| = |E| + 1. Find an example that G is not a tree.
- 17. A connected graph G = (V, E) has 50 edges. What is the maximal value of |V|? Give proof and example.
- **18.** Let G = (V, E) be a loop-free connected graph with $V = \{v_1, \ldots, v_n\}$, where $n \ge 2$, deg $v_1 = 1$ and deg $v_j \ge 2$ for all $2 \le j \le n$. Prove that G must have a cycle.
- 19. Which, if any, of the pairs of graphs shown are isomorphic? Justify your answer by describing an isomorphism or explaining why one does not exist.

- **21.** Compute the chromatic polynomial of the graphs G_1 and G_4 .
- **22.** Compute chromatic polynomial of the following graph G

Find $\chi(G)$.

23. Compute chromatic polynomial of the following graph G

Find $\chi(G)$.

- **24.** Let C_n be a cycle on n vertices. Prove that $P(C_n, \lambda) = (\lambda 1)^n + (-1)^n (\lambda 1)$.
- **25.** Let W_{n+1} be a wheel on (n+1) vertices. Compute the chromatic polynomial of W_{n+1} . Find $\chi(W_{n+1})$.