REVIEW PROBLEMS FOR THE FIRST MIDTERM TEST

1. Find an Euler circuit (if it does exist) in a given graph.
2. Let a_{n} be the number of words of length n in A, B, C, and D with an odd number of B 's. Calculate a_{0}, $a_{1}, a_{2}, a_{3}, a_{4}$. Find a recurrence relation satisfied by a_{n} for all $n \geq 2$.
3. Solve the following recurrence relations:
(a) $a_{n}=a_{n-1}+2 a_{n-2}, n \geq 2$, $a_{0}=1, a_{1}=1$.
(b) $a_{n}=a_{n-1}+a_{n-2}, n \geq 2$, $a_{0}=0, a_{1}=1$.
(c) $a_{n}=6 a_{n-1}+9 a_{n-2}, n \geq 2$, $a_{0}=1, a_{1}=-3$.
(d) $a_{n}=2 a_{n-1}-2 a_{n-2}, n \geq 2$, $a_{0}=0, a_{1}=1$.
4. Use generating functions to solve the following recurrence relations:
(a) $a_{n}-3 a_{n-1}=n^{2}, n \geq 1$,
$a_{0}=1$.
(b) $a_{n}-a_{n-1}=3 n^{2}-5 n^{3}, n \geq 1$,
$a_{0}=1$,
(c) $a_{n}+3 a_{n-1}-10 a_{n-2}=3 \cdot 2^{n}, n \geq 2$, $a_{0}=0, a_{1}=6$.
5. Let $\Sigma=\{0,1\}$ be an alphabet, and $A=\{0,01,111\} \subset \Sigma^{*}$ be a language over Σ. Find a number of strings of length n over A.
6. Let $\Sigma=\{0,1\}$ and A_{n} be the set of binary strings of length n which do not contain the string 00 . Find and solve a recurrence relation for $a_{n}=\left|A_{n}\right|$.
7. Let $G=(V, E)$ be a finite graph. Assume $v, v^{\prime} \in V$ are two verices which are connected by some $v-v^{\prime}$-walk. Prove that there exists an $x-x^{\prime}$-path (i.e. a walk which does not visit any vertex more than once).
8. A graph $G=(V, E)$ with 21 edges has seven vertices of degree 1 , three of degree 2 , seven of degree 3 and the rest of degree 4 . How many vertices does it have?
9. Write an algorithm to construct a circuit for a graph G, where all vertices of G have even degree. Explain why does it work.
10. Write an algorithm to construct an Euler circuit for a graph G, where all vertices of G have even degree. Explain why does it work.
11. Which, if any, of the pairs of graphs shown are isomorphic? Justify your answer by describing an isomorphism or explaining why one does not exist.

