REVIEW FOR THE FINAL TEST II:

1. Design a recursive algorithm which for each positive integer n computes such k that $7^{k-1} \leq n<7^{k}$.
2. Let $\Sigma=\{a, b\}$, and Σ^{*} be the language over Σ. Describe recursively the set T of words containing at least one a 's, at least one b 's and where all a 's precede all b 's.
3. Consider the following algorithm:
```
CON-3[n]:
{Input: a non-negative integer n}
{Output: ????} \longleftarrow explain
if n<3 then
        return n
else
        return CON-3[n DIV 3]n MOD 3
```

\{Here n MOD 3 follows the number CON-3 [n DIV 3].\}
Does the algorithm CON-3[n] terminate?
What is the output if you evaluate $\mathbf{C O N} \mathbf{- 3}[101]$? CON-3 $[9,999]$?
4. Let K_{n} be a complete graph with n vertices. For which n the graph K_{n} admits an Euler circuit? Explain in detail.
5. Construct an optimal tree for the following weights $\{2,3,5,7,11,13,17,19,23,29,31,37,41,43\}$.
6. Give the postorder and preorder listings for the following tree:

7. Define a complete binary tree. How many complete binary trees are there with $2 n+1$ vertices are there?
8. Write the Prim's algorithm. Use Prim's algorithm to find a minimal spanning tree for the following graph:

9. Let $G=(V, G)$ be a graph with no loops and parallel edges, and $|V|=n \geq 3$. Give a detailed proof that if $\operatorname{deg}(v)+\operatorname{deg}(w) \geq n$ for each pair of vertices v and w which are not connected by an edge, then G has a Hamiltonian cycle.
10. Write the Kruskal's algorithm. Use Kruskal's algorithm to find a minimal spanning tree for the weighted graph in problem \# 8.
11. Find chromatic polynomials $P(G, \lambda)$ for the following graphs:
(a)

(b)

(c)

12. Prove that any tree has at least two leaves.
13. Let $T=(V, E)$ be a tree. Prove that for any two distinct vertices $v, u \in V$ there is a unique path connecting them.
14. Let $T=(V, E)$ be a tree. Prove that $|V|=|E|+1$.
15. Consider the Prim's Algorithm:
$\operatorname{Prim}(G):=\operatorname{Prim}\left(G=(v, E),\left\{w_{1}=w\left(e_{1}\right), \ldots, w_{k}=w\left(e_{k}\right), k=|E|\right\}, G\right.$ is a connected graph $)$
\{Output: a minimal spanning tree $T=\left(V_{T}, E_{T}\right)$ \}:
set $V_{T}:=\emptyset, E_{T}:=\emptyset$.
Choose a vertex $w \in V$, set $V_{T}:=\{w\}$.
While $\left|V_{T}\right|<|V|$ do
Choose an edge $e=\{u, v\}$ of minimal weight with $u \in V_{T}, v \in V \backslash V_{T}$.
Set $V_{T}:=V_{T} \cup\{v\}, E_{T}:=E_{T} \cup\{e\}$.
Return $T:=\left(V_{T}, E_{T}\right)$.
Prove that the algorithm $\operatorname{Prim}(G)$ does produce a minimal spanning tree.
16. Let T be a complete binary tree.
(a) Prove that it has odd number of vertices.
(b) Assume the height of T is h, and T has ℓ leaves. Prove that $\ell \leq 2^{h}$.
17. Write the expression $(x-1)\left(x^{5}+x^{4}+x^{3}+x^{2}+x+1\right)-\left(x^{6}-1\right)$ in Polish notations.
18. Let $G=(V, E)$ be a finite graph.
(a) Assume that $|V|=|E|+1$ and that G is connected. Prove G is a tree.
(b) Assume that $|V|=|E|+1$. Find an example that G is not a tree.
19. A connected graph $G=(V, E)$ has 50 edges. What is the maximal value of $|V|$? Give proof and example.
20. Let $G=(V, E)$ be a loop-free connected graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$, where $n \geq 2$, $\operatorname{deg} v_{1}=1$ and $\operatorname{deg} v_{j} \geq 2$ for all $2 \leq j \leq n$. Prove that G must have a cycle.

