REVIEW FOR THE FINAL TEST, PART I:

1. Determine the chromatic polynomial $P(G, \lambda)$ for the following graph. Find a number of proper colorings of the graph G with 5 colors.

2. An algebraic expression is written in the reverse Polish notations as follows:

$$
-/-\wedge x 31-x 1+\wedge x 2+x 1
$$

(a) Find a binary tree representing this algebraic expression.
(b) Find this algebraic expression.
(c) Write this expression in the Polish notations.
3. Consider the Huffman Algorithm:

```
Huffman}(L={\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{k}{}})\mathrm{ :
{Input: A list of weights: L}={\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{k}{}},k\geq2
{Output: an optimal tree T(L)}
if k=2 then
    return the tree
```



```
else
    Choose two smallest weights }u\mathrm{ and v of L.
    Make a list L' by removing the elements }u\mathrm{ and v}\mathrm{ and ading the element u+v.
    Let T(L'):=Huffman (L').
    Form a tree T(L) from T(L') by replacing a leaf of weight u+v
    by a subtree with two leaves of weights }u\mathrm{ and }v\mathrm{ .
    return T(L).
```

Prove that the algorithm $\operatorname{Huffman}(L)$ does produce an optimal binary tree for the weights $L=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$.
4. Find an Euler circuit (if it does exist) in a given graph.
5. Describe the most effective way how to merge together the ordered lists $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}, L_{7}, L_{8}, L_{9}$ with the lengths $\left|L_{1}\right|=17,\left|L_{2}\right|=12,\left|L_{3}\right|=9,\left|L_{4}\right|=30,\left|L_{5}\right|=32,\left|L_{6}\right|=44,\left|L_{7}\right|=15,\left|L_{8}\right|=10,\left|L_{9}\right|=44$.
6. Use generating functions to resolve the recurrence relation: $x_{0}=2, x_{n}=3 x_{n-1}-4 n$.
7. Let $\Sigma=\{0,1,2\}$ and A_{n} be the set of binary strings of length n which do not contain the string 01 . Find and solve a recurrence relation for $a_{n}=\left|A_{n}\right|$.
8. Solve the following recurrence relations:
(a) $a_{n}=5 a_{n-1}+6 a_{n-2}, n \geq 2$, $a_{0}=0, a_{1}=1$.
(b) $a_{n}=2 a_{n-1}-2 a_{n-2}, n \geq 2$, $a_{0}=1, a_{1}=1$.
9. Prove that if a finite graph $G=(V, E)$ in which each vertex has degree at least 2 contains a cycle.
10. Prove that if a finite graph $G=(V, E)$ is a tree, if and only if $|V|=|E|+1$.
11. Let G_{n} be a graph which is obtained from the complete graph K_{n} by deleting one edge. Determine the chromatic polynomial $P\left(G_{n}, \lambda\right)$ and the chromatic number $\chi\left(G_{n}\right)$.
12. Use generating functions to solve the following recurrence relations
(a) $a_{n}=a_{n-1}+n$ for $n \geq 1$, and $a_{0}=1$;
(b) $a_{n}=5 a_{n-1}-6 a_{n-2}, a_{0}=1, a_{1}=-2$;
(c) $a_{n}=-3 a_{n-1}+10 a_{n-2}+3 \cdot 2^{n}, n \geq 2$, and $a_{0}=2, a_{1}=1$.
13. Find and solve a recurrence relation for a_{n}, the number of 012 -strings of length n in which no 2 is followed (immediately or after some intervening characters) by a 1 .
14. Let a_{n} be the number of words of lenght n in A, B, C, and D with an odd number of B 's. Calculate $a_{0}, a_{1}, a_{2}, a_{3}$, a_{4}. Find a recurrence relation satisfied by a_{n} for all $n \geq 2$.
15. Consider the Euclid Algorithm:
$\operatorname{EUCLID}(m, n)$:
$\{$ Input: $m, n \in \mathbf{N}$, not both 0$\}$
$\{$ Output: $\operatorname{gcd}(m, n)\}$
if $n=0$ then
return m
else
return $\operatorname{EUCLID}(n, m \operatorname{MOD} n)$
Use the algorithm to find $\operatorname{gcd}(21,231,141)$.
16. Let $G=(V, E)$ be a loop-free finite graph with $|V|=n$. Prove that G is a tree if and only if its chromatic polynomial $P(G, \lambda)=\lambda(\lambda-1)^{n-1}$
17. Let C_{n} be a cycle of length n. Prove that $P\left(C_{n}, \lambda\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)$.
18. Let W_{n+1} be a "wheel" with $n+1$ vertices. Prove that $P\left(W_{n+1}, \lambda\right)=\lambda(\lambda-2)^{n}+(-1)^{n} \lambda(\lambda-2)$.
19. Here is the algorithm Tree.

Tree (G, v)
Input: A vertex v of the finite graph G
Output: A set E of edges of a spanning tree for the component of G that contains v
Let $V:=\{v\}$ and $E:=\emptyset$
(where V is a list of visited vertices).
while there are edges of G joining vertices in V to vertices that are not in V do Choose such an edge $\{u, w\}$ with $u \in V$ and $w \notin V$. Put w in V and put the edge $\{u, w\}$ in E.
return E
Prove that Tree (G, v) produces a spanning tree for the component of G containing the vertex v.
20. Here is the Kruskal's Algorithm:

Kruskal's Algorithm $(G=(V(G), E(G))$, wt : $E(G) \rightarrow(0, \infty))$
Input: A finite weighted connected graph (G, wt) with edges listed in order of increasing weight
Output: A set E of edges of an optimal spanning tree for G)
Set $E=\emptyset$, for $j=1$ to $|E(G)|$ do if $E \cup\left\{e_{j}\right\}$ is acyclic then Put e_{j} in E.
return E
Prove that Tree (G, v) produces a spanning tree for the component of G containing the vertex v.

