Math 232, Winter 2017, Boris Botvinnik

REVIEW FOR THE FINAL TEST, PART I:

1. Determine the chromatic polynomial $P(G, \lambda)$ for the following graph. Find a number of proper colorings of the graph G with 5 colors.

2. An algebraic expression is written in the reverse Polish notations as follows:

$$-/- \wedge x \ 3 \ 1 \ - \ x \ 1 \ + \wedge x \ 2 \ + \ x \ 1$$

- (a) Find a binary tree representing this algebraic expression.
- (b) Find this algebraic expression.
- (c) Write this expression in the Polish notations.
- 3. Consider the Huffman Algorithm:

Huffman $(L = \{w_1, w_2, \dots, w_k\})$:

{Input: A list of weights: $L = \{w_1, w_2, \dots, w_k\}$, $k \geq 2\}$

 $\{ \texttt{Output:} \quad \texttt{an optimal tree} \ T(L) \}$

 $\quad \text{if } k=2 \ \text{then} \\$

return the tree

else

Choose two smallest weights u and v of L.

Make a list L' by removing the elements u and v and adding the element u+v.

Let $T(L') := \mathbf{Huffman}(L')$.

Form a tree T(L) from $T(L^\prime)$ by replacing a leaf of weight u+v

by a subtree with two leaves of weights \boldsymbol{u} and \boldsymbol{v} .

return T(L).

Prove that the algorithm **Huffman**(L) does produce an optimal binary tree for the weights $L = \{w_1, w_2, \dots, w_k\}$.

- 4. Find an Euler circuit (if it does exist) in a given graph.
- **5.** Describe the most effective way how to merge together the ordered lists L_1 , L_2 , L_3 , L_4 , L_5 , L_6 , L_7 , L_8 , L_9 with the lengths $|L_1| = 17$, $|L_2| = 12$, $|L_3| = 9$, $|L_4| = 30$, $|L_5| = 32$, $|L_6| = 44$, $|L_7| = 15$, $|L_8| = 10$, $|L_9| = 44$.
- **6.** Use generating functions to resolve the recurrence relation: $x_0 = 2$, $x_n = 3x_{n-1} 4n$.
- 7. Let $\Sigma = \{0, 1, 2\}$ and A_n be the set of binary strings of length n which do not contain the string 01. Find and solve a recurrence relation for $a_n = |A_n|$.
- **8.** Solve the following recurrence relations:

(a)
$$a_n = 5a_{n-1} + 6a_{n-2}, n \ge 2,$$

 $a_0 = 0, a_1 = 1.$

(b)
$$a_n = 2a_{n-1} - 2a_{n-2}, n \ge 2,$$

 $a_0 = 1, a_1 = 1.$

- **9.** Prove that if a finite graph G = (V, E) in which each vertex has degree at least 2 contains a cycle.
- 10. Prove that if a finite graph G = (V, E) is a tree, if and only if |V| = |E| + 1.
- 11. Let G_n be a graph which is obtained from the complete graph K_n by deleting one edge. Determine the chromatic polynomial $P(G_n, \lambda)$ and the chromatic number $\chi(G_n)$.
- 12. Use generating functions to solve the following recurrence relations
 - (a) $a_n = a_{n-1} + n$ for $n \ge 1$, and $a_0 = 1$;
 - **(b)** $a_n = 5a_{n-1} 6a_{n-2}, \ a_0 = 1, \ a_1 = -2;$
 - (c) $a_n = -3a_{n-1} + 10a_{n-2} + 3 \cdot 2^n$, $n \ge 2$, and $a_0 = 2$, $a_1 = 1$.
- 13. Find and solve a recurrence relation for a_n , the number of 012-strings of length n in which no 2 is followed (immediately or after some intervening characters) by a 1.
- **14.** Let a_n be the number of words of length n in A, B, C, and D with an odd number of B's. Calculate a_0 , a_1 , a_2 , a_3 , a_4 . Find a recurrence relation satisfied by a_n for all $n \ge 2$.
- **15.** Consider the Euclid Algorithm:

```
\begin{aligned} &\mathbf{EUCLID}(m,n)\colon\\ &\{\mathbf{Input}\colon & m,n\in\mathbf{N}\text{, not both }0\}\\ &\{\mathbf{Output}\colon & \gcd(m,n)\}\\ &\text{if }n=0\text{ then}\\ &\text{return }m\\ &\text{else}\\ &\text{return }\mathbf{EUCLID}(n,\ m\ \mathrm{MOD}\ n) \end{aligned}
```

Use the algorithm to find gcd(21,231, 141).

- **16.** Let G = (V, E) be a loop-free finite graph with |V| = n. Prove that G is a tree if and only if its chromatic polynomial $P(G, \lambda) = \lambda(\lambda 1)^{n-1}$
- 17. Let C_n be a cycle of length n. Prove that $P(C_n, \lambda) = (\lambda 1)^n + (-1)^n (\lambda 1)$.
- **18.** Let W_{n+1} be a "wheel" with n+1 vertices. Prove that $P(W_{n+1},\lambda)=\lambda(\lambda-2)^n+(-1)^n\lambda(\lambda-2)$.
- **19.** Here is the algorithm **Tree**.

```
 \begin{aligned} & \mathbf{Tree}(G,v) \\ & \mathbf{Input: A \ vertex} \ v \ \text{of the finite graph} \ G \\ & \mathbf{Output: A \ set} \ E \ \text{of edges of a spanning tree for the component of} \ G \ \text{that contains} \ v \\ & \mathbf{Let} \ \ V := \{v\} \ \text{ and } E := \emptyset \\ & \text{ (where } V \ \text{is a list of visited vertices).} \end{aligned}  while there are edges of G joining vertices in V to vertices that are not in V do Choose such an edge \{u,w\} with u \in V and w \notin V. Put w in V and put the edge \{u,w\} in E. return E
```

Prove that $\mathbf{Tree}(G, v)$ produces a spanning tree for the component of G containing the vertex v.

20. Here is the Kruskal's Algorithm:

```
Kruskal's Algorithm (G=(V(G),E(G)), \text{ wt}: E(G) \to (0,\infty))
Input: A finite weighted connected graph (G,\text{wt}) with edges listed in order of increasing weight Output: A set E of edges of an optimal spanning tree for G)
Set E=\emptyset, for j=1 to |E(G)| do if E\cup\{e_j\} is acyclic then Put e_j in E. return E
```

Prove that $\mathbf{Tree}(G, v)$ produces a spanning tree for the component of G containing the vertex v.