Math 232, Winter 2017 Boris Botvinnik

Summary on Lecture 3, January 13, 2017

We continue with Recurrence Relations

Fibonacci numbers again: nontrivial application. Now we denote by F_n the Fibonnaci numbers defined above, i.e. $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Let $\alpha = \frac{1+\sqrt{5}}{2}$. We need the following property: **Lemma 1.** $F_n > \alpha^{n-2}$ for $n \ge 3$.

Exercise: Prove Lemma 1 by induction.

Let m, k be positive integers, $k \geq 2$, and we look at the division:

$$m = q \cdot k + r$$
, $0 < r < b$.

Recall that a key to compute gcd(m, k) is the identity gcd(m, k) = gcd(k, r). We organize the Euclidian Algorithm as follows to match the notations from the book.

Let $r_0 = m$, $r_1 = k$. Then we have the divisions:

$$\begin{array}{rclcrcl} r_{0} & = & q_{1}r_{1} + r_{2} & 0 \leq r_{2} < r_{1} \\ r_{1} & = & q_{2}r_{2} + r_{3} & 0 \leq r_{3} < r_{2} \\ r_{2} & = & q_{3}r_{3} + r_{4} & 0 \leq r_{4} < r_{3} \\ \dots & \dots & \dots & \dots \\ r_{n-2} & = & q_{n-1}r_{n-1} + r_{n} & 0 \leq r_{n} < r_{n-1} \\ r_{n-1} & = & q_{n}r_{n} \end{array} \tag{1}$$

Then we have the sequence of identities:

$$\gcd(m,k) = \gcd(r_0,r_1) = \gcd(r_1,r_2) = \gcd(r_2,r_3) = \cdots = \gcd(r_{n-1},r_n) = \gcd(r_n,0) = r_n.$$

We notice that we have performed n divisions, and every quotient $q_i \ge 1$ for all i = 1, 2, ..., n - 1. Then the $r_{n-1} = q_n r_n$ and $r_n < r_{n-1}$ imply that $q_n \ge 2$.

Now we examine the remainders $r_n, r_{n-1}, \ldots, r_2, r_1$ (here $r_1 = k$). We have:

Since $k = r_1$, we obtain $k \ge F_{n+1}$, $m \ge k \ge 2$. Lemma 1 then implies that

$$k \ge F_{n+1} \ge \alpha^{n+1-2} = \alpha^{n-1}$$
, or $\log_{10} k \ge (n-1) \log_{10} \alpha$

Then we have that $\log_{10}\alpha = \log_{10}(\frac{1+\sqrt{5}}{2}) = 0.208... > 0.2 = \frac{1}{5}$, i.e., $\log_{10}k \ge \frac{n-1}{5}$. This means that if k is such that $10^{s-1} \le k < 10^s$, then

$$s = \log_{10} 10^s > \log_{10} k \ge \frac{n-1}{5}$$
, or $n < 5s + 1$.

We proved the following result.

Theorem 3. Let $m \ge k \ge 2$, and k has at most s digits, (i.e., $10^{s-1} \le k < 10^s$). Then the Euclidian Algorithm requires at most 5s divisions to compute gcd(m, k).