Optimal spanning trees

2. Optimal spanning trees. Let $G=(V(G), E(G))$ be a finite graph. As in the case of directed graphs, we say that G is a weighted graph if we are given a weight function wt : $E(G) \rightarrow[0, \infty)$. The if $H \subset G$ is a subgraph of G, then a weight $W(H)$ is the sum of the weights of edges in H.

Optimal spanning tree problem: For a given finite connected graph $G=(V(G), E(G))$, find a spanning tree $T \subset G$ of minimal weight. Such a spanning tree is called optimal (or minimal in some other sources).
Our next algorithm builds an optimal spanning tree for a weighted graph $G=(V(G), E(G)),|E(G)|=m$, whose edges e_{1}, \ldots, e_{m} have been initially sorted so that

$$
\mathrm{wt}\left(e_{1}\right) \leq \mathrm{wt}\left(e_{2}\right) \leq \cdots \leq \mathrm{wt}\left(e_{m}\right)
$$

The algorithm proceeds one by one through the list of edges of G, beginning with the smallest weights, choosing edges that do not introduce cycles. When the algorithm stops, the set E is supposed to be the set of edges in a minimum spanning tree for G. The notation $E \cup\left\{e_{j}\right\}$ in the statement of the algorithm stands for the subgraph whose edge set is $E \cup\left\{e_{j}\right\}$ and whose vertex set is $V(G)$.

Kruskal's Algorithm $(G=(V(G), E(G))$, wt : $E(G) \rightarrow(0, \infty))$
Input: A finite weighted connected graph (G, wt) with edges listed in order of increasing weight Output: A set E of edges of an optimal spanning tree for G)
Set $E=\emptyset$, for $j=1$ to $|E(G)|$ do
if $E \cup\left\{e_{j}\right\}$ is acyclic then
Put e_{j} in E.
return E

Exercise. Use the Kruskal's Algorithm algorithm for the following graph:

Fig. 3. Here the weights $w_{i}=\mathrm{wt}\left(e_{i}\right)$ of the edges are already ordered.

Prim's Algorithm $(G=(V(G), E(G))$, wt : $E(G) \rightarrow(0, \infty))$
Input: A finite weighted connected graph (G, wt) with edges listed in any order Output: A set E of edges of an optimal spanning tree for G)
Set $E=\emptyset$. Choose w in $V(G)$ and set $V:=\{w\}$. while $|V|<|V(G)|$ do

Choose an edge $\{u, v\}$ in $E(G)$ of smallest possible weight with $u \in V$ and $v \in V(G) \backslash V$.
Put $\{u, v\}$ in E and put v in V.
return E
Exercise. Use the Prim's Algorithm algorithm for the graph given at Fig. 3.

