Summary on Lecture 19, February 27, 2017

Digraphs and shortest paths

Let $G=(V, E)$ be a graph or digraph. We say that G is weighted if we are given a function wt : $E \rightarrow(0, \infty)$. In other words, each edge $e \in E$ is given a positive weight $w t(e)$. It is convenient to have a convention that if $v, v^{\prime} \in V(G)$ are not connected by an edge, then a virtual edge $\left(v, v^{\prime}\right)$ has weight ∞. We also accept a convention that a virtual edge (v, v) has zero weight. Then once we have a weighted graph, it makes sense to determine a shortest distance $d\left(v, v^{\prime}\right)$ from a vertex v to a vertex v^{\prime}.

Fig. 1. Weighted digraph G_{1}.
Example. Consider the digraph G_{1} in Fig. 1. It is easy to check that the shortest distance (weight) from v_{4} to v_{1} is 5 when we take the route $v_{4} \rightarrow v_{5} \rightarrow v_{1}$, and it is shorter than a "direct" shot $v_{4} \rightarrow v_{1}$.

Now the "shortest" paths $v_{4} \rightarrow v_{1} \rightarrow v_{2} \rightarrow v_{3}$ and $v_{4} \rightarrow v_{5} \rightarrow v_{2} \rightarrow v_{3}$ from v_{4} to v_{3} have weights $6+7+4=17$ and $3+7+4=14$, respectively, but the "longer" path $v_{4} \rightarrow v_{5} \rightarrow v_{1} \rightarrow v_{6} \rightarrow v_{2} \rightarrow v_{7} \rightarrow v_{4}$ has weight $3+2+1+3+1+3=13$, which is less than either of these. Thus length is not directly related to weight.

There are special vertices in G_{1}, namely, v_{4} is a source, and v_{3} is a sink. Indeed, v_{4} has only outbounded edges, and v_{3} only inbounded edges.

In the case when a weighted digraph $G=(V, E)$ with a only one source v_{0} and one sink v_{*} and has no loops and parallel edges), it is called a scheduling network. The objective here is to find a shortest path (i.e., with minimal weight) from a source to a sink. This is known as scheduling problem. We assume that a weight of every edge is positive. In fact, we resolve more general problem, namely, for each vertex $v_{0} \in V$ we determine
(i) the distance $d\left(v_{0}, v\right)$ for every $v \in V$;
(ii) a shortest path from v_{0} to v if such a path exists.

We subdivide the set of vertices V into two subsets: $V=S \cup \bar{S}$, where $v_{0} \in S$, and $\bar{S}=V \backslash S$, so that $S \cap \bar{S}=\emptyset$. Then we define the distance $d\left(v_{0}, \bar{S}\right)$:

$$
d\left(v_{0}, \bar{S}\right)=\min \left\{d\left(v_{0}, \bar{v}\right) \mid \bar{v} \in \bar{S}\right\}
$$

If the distance $d\left(v_{0}, \bar{S}\right)$ is finite, then there exists at least one vertex $\bar{v}_{*} \in \bar{S}$ such that $d\left(v_{0}, \bar{S}\right)=d\left(v_{0}, \bar{v}_{*}\right)$. We choose a shortest path P from v_{0} to \bar{v}_{*} :

$$
P: v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{k} \rightarrow v_{k+1}=\bar{v}_{*}
$$

Now we make the following observations:
(1) The vertices $v_{0}, v_{1}, \ldots v_{k}$ are in S. Indeed, if v_{i} would be in \bar{S} for some $i=1, \ldots, k$, then the path $P_{i}: v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{i}$ would be shorter than P.
(ii) The path $P_{i}: v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \cdots \rightarrow v_{i}$ is the shortest path in G from v_{0} to v_{i} for each $i=1, \ldots, k$. Indeed, if there would be a shorter path P_{i}^{\prime} from v_{0} to v_{i}, then we would find a path P_{i}^{\prime} composed with the path $v_{i} \rightarrow \cdots \rightarrow v_{k+1}=\bar{v}_{*}$ which is shorter than P.

Lemma 1. $d\left(v_{0}, \bar{S}\right)=\min \left\{d\left(v_{0}, u\right)+\mathrm{wt}(u, \bar{v}) \mid u \in S, \quad \bar{v} \in \bar{S}\right\}$.
Then if the minimum occurs when $u=u_{*} \in S$ and $\bar{v}=\bar{v}_{*} \in \bar{S}$, then we have that

$$
\begin{equation*}
d\left(v_{0}, \bar{S}\right)=d\left(v_{0}, u_{*}\right)+\mathrm{wt}\left(u_{*}, \bar{v}_{*}\right) \tag{1}
\end{equation*}
$$

We use the formula (1) to explain the idea of the Dijkstra's Shortest Path Algorithm. It goes as follows. Let $S_{0}=\left\{v_{0}\right\}$, and $\bar{S}_{0}=V \backslash S_{0}$. We find $d\left(v_{0}, \bar{S}_{0}\right)$:

$$
d\left(v_{0}, \bar{S}_{0}\right)=\min \left\{\operatorname{wt}\left(v_{0}, \bar{v}\right) \mid \bar{v} \in \bar{S}_{0}\right\}
$$

Let $v_{1} \in \bar{S}_{0}$ be such that $d\left(v_{0}, \bar{S}_{0}\right)=d\left(v_{0}, v_{1}\right)$. Then we define $S_{1}=S_{0} \cup\left\{v_{1}\right\}$, and $\bar{S}_{1}=V \backslash S_{1}$. Then we find $d\left(v_{0}, \bar{S}_{1}\right)$:

$$
d\left(v_{0}, \bar{S}_{1}\right)=\min \left\{d\left(v_{0}, v_{1}\right)+\operatorname{wt}\left(v_{1}, \bar{v}\right) \mid \bar{v} \in \bar{S}_{1}\right\}
$$

We find $v_{2} \in \bar{S}_{1}$ such that $d\left(v_{0}, \bar{S}_{1}\right)=d\left(v_{0}, v_{1}\right)+\mathrm{wt}\left(v_{1}, v_{2}\right)$. If we proceed in such a way, we construct a set $S_{i}=\left\{v_{0}, v_{1}, \ldots, v_{i}\right\}$, and find the distance $d\left(v_{0}, \bar{S}_{i}\right)$:

$$
d\left(v_{0}, \bar{S}_{i}\right)=\min \left\{d\left(v_{0}, v_{i}\right)+\operatorname{wt}\left(v_{i}, \bar{v}\right) \mid \bar{v} \in \bar{S}_{i}\right\}
$$

and find the next vertex $v_{i+1} \in \bar{S}_{i}$ such that $d\left(v_{0}, \bar{S}_{i}\right)=\min \left\{d\left(v_{0}, v_{i}\right)+\mathrm{wt}\left(v_{i}, v_{i+1}\right)\right.$. The algorithm will stop if either $d\left(v_{0}, \bar{S}_{i}\right)=\infty$, or $|S|=|V|$. Fig. 2 shows the resulting path for the graph G_{1} as above.

Fig. 2. A shortest path from v_{4} to v_{3}.
Next time we analyze the Dijkstra's Shortest Path Algorithm in detail.

