Summary on Lecture 18, February 24, 2017

Prefix Codes

We choose the prefix code $00,01,100,1010,1011,11$. This set could serve as a code for the letters in an alphabet $\Sigma=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ that has six letters. It is the set of leaves of a labeled binary tree in Fig. 1.

Fig. 1. Prefix code. Here $a_{1}:=00, a_{2}:=01, a_{3}:=100, a_{4}:=1010, a_{5}:=1011, a_{6}:=11$.
Now assume that we are given the binary string

$$
11101011011000100111110010
$$

We visit vertex 1 , then vertex 11. Since vertex 11 is a leaf, we record 11 and return to the root. Next we visit vertices $1,10,101$, and 1010. Since 1010 is a leaf, we record 1010 and return again to the root. Proceeding in this way, we obtain the sequence of code symbols

$$
11,1010,11,01,100,01,00,11,11,100, \mathrm{STOP}
$$

and have 10 left over which does not give any symbol encoded by the leaves. Now we suppose that we know how frequently each letter in $\Sigma=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ is used in sending messages. Namely, we assume that the frequencies $10,10,15,20,20,25$ correspond to the letters $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$.

Then we would like to find the most efficient prefix code, i.e. we want to minimize the average length of a code message using (say, 100 letters) from Σ. Thus all we need is an optimal binary tree for the weights $\{10,10,15,20,20,25\}$. Now we run Huffman algorithm and obtain the optimal tree, see Fig. 2 (b):

Then the same tree (see Fig. 2 (b)) with binary labels gives new prefix code

$$
a_{1}:=1110, a_{2}:=1111, a_{3}:=110, a_{4}:=00, a_{5}:=01, a_{6}:=10
$$

This is an optimal prefix code for given frequences.
Example. Here is a prefix code: $\{00,010,0110,0111,10,11\}$ We construct a binary tree corresponding to this prefix code:

Fig. 3. Prefix code: here $00:=\mathrm{A}, 10:=\mathrm{D}, 11:=\mathrm{E}, 010:=\mathrm{H}, 0110:=\mathrm{M}$, and $0111:=$ ' (the apostrophe)
Now we decode the string

$$
01011011000101101101101100010
$$

to get the string HEMADEMEMAD (he made me mad).
Exercise 1. Decode the string:
100010010001001100010000110.01011011000101101100001100010 .011000011000101110001010110010.

Exercise 2. Assume that the letters A,D,E,H,M,' have frequences 30, 25, 27, 20, 33, 10 respectively. Find an optimal prefix code and encode the message "HEMADEMEMAD".

