
Math 232, Winter 2017 Boris Botvinnik

Summary on Lecture 17, February 22, 2017

Weighted Trees and Huffman algorithm

Let L = (w1, . . . , wt) be a list of weights. Recall that we say that a binary weighted tree T is optimal for the
weights L = (w1, . . . , wt) if W (T) ≤W (T ′) for any weighted tree T ′ with the same weights L = (w1, . . . , wt).

Here is the algorithm to find an optimal tree for a given list of weights:

Huffman(L = {w1, w2, . . . , wk}):
{Input: A list of weights: L = {w1, w2, . . . , wk}, k ≥ 2}
{Output: an optimal tree T (L)}
if k = 2 then

return the tree

w2w1

else

Choose two smallest weights u and v of L.
Make a list L′ by removing the elements u and v and adding the element u + v.
Let T (L′) :=Huffman(L′).
Form a tree T (L) from T (L′) by replacing a leaf of weight u + v
by a subtree with two leaves of weights u and v.

return T (L).

Now we returen to the example above to merge the lists L1 , L2 , L3 , L4 , and L5 with |L1| = 15, |L2| = 22,
|L3| = 31, |L4| = 34, and |L5| = 42. We run the algorithm Huffman(L = {15, 22, 31, 34, 42}) and we get the
following weighted tree:

|L1|=15 |L2|=22

|L5|=42 |L4|=34 |L3|=31

Fig. 3.

We get the the following total number of comparisons:

W (T)− 4 = 3 · |L1|+ 3 · |L2|+ 2 · |L3|+ 2 · |L4|+ 2 · |L1| − 4 = 3 · 15 + 3 · 22 + 2 · 31 + 2 · 34 + 2 · 42− 4 = 321.

Now we will show that the algorithm Huffman(L) indeed works. Let w1, w2, . . . , wk be the weights, and let
T be an optimal tree with those weights. We denote by `j the level of the vertex labeled by wj .

Lemma 1. Let T be an optimal tree with the weights w1, w2, . . . , wk . Then if wi < wj , then `i ≥ `j .

1

Proof. Assume that wi < wj and `i < `j for an optimal tree T . We denote by T ′ the tree which is obtained
from T by interchanging the weights wi and wj . We obtain:

W (T)−W (T ′) = wi`i + wj`j − wi`j − wj`i = (wj − wi)(`j − `i) > 0

Thus W (T) > W (T ′), i.e. T is not an optimal tree. Contradiction. Hence wi < wj implies `i ≥ `j for an
optimal tree. �

Lemma 2. Let w1 ≤ w2 ≤ · · · ≤ wk . Then there exists an optimal tree for those weight such that w1 and w2

are at the lowest level ` .

Proof. Let T be an optimal tree, and wi and wj are at the lowest level ` . If w1 < wi , then `1 ≥ ` . This means
that `1 = ` since ` is the lowest level. If w1 = wj , then we can interchange the weights w1 and wj without
changing the weight of the tree. Similarly, by interchanging w2 and wj if necessary, we obtain an optimal tree
with w1 and w2 at the lowest level. �

Now we are ready to prove that the algorithm Huffman(L) indeed works.

Theorem. Let w1 ≤ w2 ≤ w3 ≤ · · · ≤ wk , and T0 be an optimal tree for the weights w1 + w2, w3, . . . wk . Then
the tree T , obtained from T0 by replacing the leaf w1+w2 by a subtree with the weights w1 and w2 , is an optimal
tree for the weights w1 ≤ w2 ≤ w3 ≤ · · · ≤ wk .

Proof. Clearly, there are only finite number of binary trees with k leaves. Then it means that there exists an
optimal tree T ′ with given weights w1 ≤ w2 ≤ w3 ≤ · · · ≤ wk . By Lemma 2, we can assume that the weights w1

and w2 have both the lowest weight ` . Moreover, since T is a binary tree, we can assume that w1 and w2 are
children of the same parent. Indeed, if w1 has a sibling wi with i > 2, we interchange w2 and wi . Let p be a
common parent of w1 and w2 .

We denote by Tp the subtree with the root p and two children w1 and w2 . Then the weight of the tree remains
the same. Now we denote by T ′

0 the tree obtained from T ′ by replacing the subtree Tp by a leaf with the weight
w1 + w2 . Now we find that

W (T ′)−W (T ′
0) = `(w1 + w2)− (`− 1)(w1 + w2) = w1 + w2

Thus W (T ′) = W (T ′
0) + (w1 + w2). Similary, we obtain that W (T) = W (T0) + w1 + w2 . Since T ′ is an optimal

tree for the weights w1 ≤ w2 ≤ w3 ≤ · · · ≤ wk , we obtain that W (T) ≤W (T ′), or we have that

W (T ′
0) + (w1 + w2) ≤W (T0) + w1 + w2

Thus W (T ′
0) ≤ W (T0). Since T0 is an optimal tree, we obtain that W (T ′

0) ≥ W (T0), i.e. W (T0) = W (T ′
0), i.e.

T ′
0 is an optimal tree. This shows that the algorithm Huffman(L) delivers an optimal tree. �

Exercise. Show that the complexity of the algorithm Huffman(L) is at least O(k2), where k is the number of
weights. Find a way to improve it to O(k log2 k).

Exercise. Construct an optimal binary tree for the following sets of weights and compute the weight of the
optimal tree.

(a) L = {1, 3, 4, 6, 9, 13} ,

(b) L = {1, 3, 5, 6, 10, 13, 16} ,

(c) L = {2, 4, 5, 8, 13, 15, 18, 25} ,

(d) L = {1, 2, 3, 5, 8, 13, 21, 34} .

2

