Summary on Lecture 15, February 17, 2016

More on Rooted Trees

Let $m \geq 1$. Recall that a rooted tree (T, r) is a complete m-ary tree if every vertex of T has either m children or no children. Mostly we are interested in the case $m=2$.

Lemma 1. Let (T, r) be a complete binary tree. Then $|V(T)|$ is odd.
Exercise. Prove Lemma 1 by induction.
We would like to count how many complete binary trees are there with $2 n+1$ vertices.
Let (T, r) be a complete binary tree with $2 n+1$ vertices. We use preorder listing to give a a list of all vertices (starting with the root): $r v_{1} v_{2} \ldots v_{2 n}$. We notice that every move from v_{i} to v_{i+1} has a direction: its either left (L) or right (R). Hence the list $r v_{1} v_{2} \ldots v_{2 n}$ gives a sequence of $2 n \mathrm{~L}$'s and R's. Then we notice:

- We visit first the "left" child, then the "right" one. Thus if we count how many L's and R's from the beginning to a given spot, we'll get that the number of L's is greater or equal to the number of R's.
- There are n L's and n R's.

We have seen this problem before, and conclude that the number of such listings (and, consequently, the number of complete binary graphs with $2 n+1$ vertices) is nothing but the Catalan number, namely, $\frac{1}{n+1}\binom{2 n}{n}$.
Recall definition of the Catalan numbers. Let us consider the $x y$-plane, and two types of moves:

$$
\mathrm{R}:(x, y) \mapsto(x+1, y), \quad \mathrm{U}:(x, y) \mapsto(x, y+1)
$$

We are allowed to make the moves R and U to get from the point $(0,0)$ to the point (n, n). A path consisting of only the moves R and U is called monotonic.
Warm-up question: How many monotonic paths are there from $(0,0)$ to (n, n) ?
This is easy. Indeed, any monotonic path can be recorded as a sequence of $n \mathrm{R}$'s and $n \mathrm{U}$'s. A total number of moves is $2 n$; thus it is enough to choose n slots for R's (or $n \quad \mathrm{U}$'s). We obtain $\binom{2 n}{n}$ paths.

A monotonic path from $(0,0)$ to (n, n) is dangerous if it crosses the diagonal.
Actual question: How many non-dangerous monotonic paths are there from $(0,0)$ to (n, n) ?
Let $n=6$. Then the paths
$R R U R U \cup R \cup R \cup R U$ is non-dangerous,
$R R U R U \cup R \cup U \cup R R \quad$ is dangerous.
To distinguish dangerous and non-dangerous paths, we count how many R and U moves did we make at every step:

\Downarrow

Moreover, once the number of U-moves gets greater than the number of R -moves, we use the red color. Then, once the first red indicator appears, we write new path, where we change the path after the dangerous U-move:
all R-moves we turn to U-moves, and all U-moves we turn to R-moves:
\Downarrow

In the black portion of the new path, we have 4 R -moves and 5 U -moves; in the red portion, we have 1 R -move and 2 U -moves. Totally, new path has 5 R -moves and 7 U -moves. Thus it is a path from $(0,0)$ to $(5,7)$. We claim that in this way every dangerous path turns to a path from $(0,0)$ to $(5,7)$. Thus we have the answer:

$$
\{\# \text { of all paths }\}-\{\# \text { of dangerous paths }\}=\binom{12}{6}-\binom{12}{5}
$$

For general n, we do the same. Namely, we consider a dangerous path (first line) and we produce new path below:

\[

\]

The first path is dangerous since the red marker \Downarrow shows that there are $k \mathrm{U}$'s and $(k-1) \mathrm{R}$'s, so the path crossed the diagonal. For the new path we changed all U's by R's and all R's by U's after the red marker \Downarrow. Totally, for the new path, we have

$$
\begin{aligned}
& k+n-k+1=n+1 \quad \mathrm{U}^{\prime} s \\
& k-1+n-k=n-1 \quad \mathrm{R}^{\prime} s
\end{aligned}
$$

Thus we have the answer:

$$
b_{n}:=\binom{2 n}{n}-\binom{2 n}{n-1}=\frac{1}{n+1}\binom{2 n}{n} .
$$

Now we return to trees. Let $G=(V, E)$ be a connected graph without loops and multiple edges. We assume that the vertices of G are ordered, i.e., $V=\left\{v_{1}, \ldots, v_{n}\right\}$. We would like to find a spanning tree (T, r) (which is depth-first ordered rooted tree).

Here is a pseudocode for a recursive version of the Depth-First-Search algorithm:

```
Depth-First-Search (G,v)
    Let v:= v1. Put v to the list T
    For all edges from v to w in E(G) do
        if w is not in T then call T(G,w):= Depth-First-Search (G,w),
        T:=T\cupT(G,w)
    Return T
```

Exercise. Use Depth-First-Search (G, v) algorithm for several large graphs. Find non-trivial examples.
Exercise. Study the Breadth-First-Search (G, v) algorithm from the textbook and write a pseudocode for its recursive version.

