Rooted Trees

I would like to describe rooted trees recursively.

Definition.

(B) A graph T with one vertex v and no edges is a [trivial] rooted tree (T, v) with the root v;
(R) If (T, r) is a rooted tree with the root r, and T^{\prime} is obtained by attaching a leaf to T, then $\left(T^{\prime}, r\right)$ is a rooted tree with the root r.

Clearly this definition gives nothing but rooted trees.
Here is another way to describe the class of rooted trees recursively. We will define a class \mathcal{R} of ordered pairs (T, r) in which T is a tree and r is a vertex of T, called the root of the tree. For convenience, say that $\left(T_{1}, r_{1}\right)$ and $\left(T_{2}, r_{2}\right)$ are disjoint in case T_{1} and T_{2} have no vertices in common. If the pairs $\left(T_{1}, r_{1}\right), \ldots\left(T_{k}, r_{k}\right)$ are disjoint, then we will say that T is obtained by hanging $\left(T_{1}, r_{1}\right), \ldots\left(T_{k}, r_{k}\right)$ from r in case
(1) r is not a vertex of any T_{i};
(2) $V(T)=V\left(T_{1}\right) \cup \cdots \cup V\left(T_{k}\right) \cup\{r\}$;
(3) $E(T)=E\left(T_{1}\right) \cup \cdots \cup E\left(T_{k}\right) \cup\left\{e_{1}, \ldots, e_{k}\right\}$, where the edge e_{i} joins r to r_{i}.

Here is an illustration of this definition:

Here is the definition of the class \mathcal{R} (of rooted trees):
(B) If T is a graph with one vertex v and no edges, then $(T, v) \in \mathcal{R}$;
(R) If $\left(T_{1}, r_{1}\right), \ldots,\left(T_{k}, r_{k}\right)$ are disjoint members of \mathcal{R} and if (T, r) is obtained by hanging $\left(T_{1}, r_{1}\right), \ldots,\left(T_{k}, r_{k}\right)$ from r, then $(T, r) \in \mathcal{R}$.

Preorder and Postorder Listings. Let (T, v) be a rooted tree, where v is a root. For each child w of v we denote by $\left(T_{w}, w\right)$ the rooted subtree of (T, v) which starts with the root w. There are two important algorithms to create preodered and postordered listings, $\operatorname{Preorder}(T, v)$ and $\operatorname{Postorder}(T, v)$. Here they are:
$\operatorname{Preorder}(T, v)$
Put v to the list $L(v)$
for each child w of v, from left to right do
Attach Preorder $\left(T_{w}, w\right)$ to the end of the list $L(v)$
Return $L(v)$
Here we created the list of vertices of (T, v), where all parents are listed before their children.

```
Postorder (T,v)
    Start with empty list L(v)
    for each child w of v, from left to right do
    Attach Postorder (Tw,w) to the end of the list L(v)
    Put v to the end of the list L(v)
    Return L(v)
```

Here we created the list of vertices of (T, v), where all children listed before their parents.
We say that a rooted tree (T, v) is binary if every vertex has at most two chidren. Then we say that (T, v) is a complete binary tree if every vertex has exactly two chidren. It is easy to show (by induction) that a a complete binary tree has odd number of vertices.

Polish Notations. Now we describe an important application. Consider the formula:

$$
\frac{\left((a+b)^{5}-z / 7\right)^{6}}{(a-b)^{3}+6 x}
$$

Here is the preorder listing of this graph (known as Polish notations):

$$
/ \wedge-\wedge+a b 5 / z 76+\wedge-a b 3 * 6 x
$$

