Math 232, Winter 2017 Boris Botvinnik

Summary on Lecture 13, February 13, 2017

Trees: definitions and basic properties

Definition. A connected graph G = (V, E) is a tree if G has no cycles.

Theorem 1. Let T = (V, E) be a tree, and $v, v' \in V(T)$. Then there exists a unique path from v to v'.

Proof. Assume there are two different paths connecting v and v'. Then there is a cycle.

Definition. Let G = (V, E) be a graph. A tree $T \subset G$ is a spanning tree of G if V(T) = V(E).

Theorem 2. Let G = (V, E) be a finite graph. Then G is connected if and only if there exists a spanning tree T of G.

Proof. Let $T \subset G$ be a spanning tree. Then for any two vertices $v, v' \in V(T) = V(G)$ there exists a path in T (and, consequently, in G) which connects v and v'.

On the other hand, if G is connected, then we remove all loops from G to obtain graph G_1 , which is still connected. If G_1 is a tree, we are done. If not, we find a cycle in G_1 , and choose an edge e_1 in that cycle. Then $G_2 = G_1 \setminus \{e_1\}$ is a connected graph. If G_2 has a cycle, we repeat the procedure. Finally we will obtain a connected graph $G_k \subset G$ which has no cycles since the original graph is finite, i.e., G_k is a spanning tree. \Box

Let G = (V, E) be a graph. We say that a vertex $v \in V$ is a *leaf* of G if $\deg v = 1$. We need the following observation:

Lemma 1. Let T = (V, E) be a finite tree. There there are at least two leaves v, v' in T.

Proof. Consider a longest path in T, and let v and v' are its end-points. We notice that $v \neq v'$ since T is a tree. Then v and v' are both leaves, indeed, if not, we can extend a path by at least one edge.

Theorem 2. Let T = (V, E) be a finite tree. Then |V| = |E| + 1.

Proof. Induction on k = |V|. Theorem 2 obviously holds if k = 1 and k = 2. Assume Theorem 2 holds for all trees T' = (V', E') with $|V| \le n$. Consider a tree T = (V, E) with |V| = n + 1. Then by Lemma 1, there exists a leaf $v \in V'$ with a single edge e. We prune the tree T at v, to obtain a tree T' = (V', E'), where $V' = V \setminus \{v\}$, $E' = E \setminus \{e\}$. By induction, |V'| = |E'| + 1. Since |V| = |V'| + 1 and |E| = |E'| + 1, we obtain that |V| = |E| + 1.

Theorem 3. The following statements are equivalent:

- (a) A graph G = (V, E) is a finite tree.
- (b) A graph G = (V, E) is connected, but a removal of any edge will make it disconnected.
- (c) A graph G = (V, E) contains no cycles and |V| = |E| + 1.
- (d) A graph G = (V, E) is connected and |V| = |E| + 1.

Proof. (a) \Longrightarrow (b) Let G = (V, E) be a finite tree. Assume that a removing an edge e from G keeps $G \setminus \{e\}$ connected. Let v, v' be the end-vertices of e. Then there exists a path in $G \setminus \{e\}$ connecting v and v'. Then we put the edge e back an we obtain a cycle. Thus G could not be a tree in the first place. Contradiction. Thus $(a) \Longrightarrow (b)$.

- (b) \Longrightarrow (c) Let G = (V, E) be as in (b), however, G contains a cycle. Then we can remove an edge e from such a cycle, and the graph $G \setminus \{e\}$ is still connected. Contradiction. Thus G = (V, E) has no cycles, and, by definition, G is a tree. By Theorem 2, |V| = |E| + 1.
- (c) \Longrightarrow (d) Let G = (V, E) be as in (c), however, G is not connected. It means that $G = G_1 \cup \cdots \cup G_r$, where G_i are connective components of G and $r \geq 2$. Then every component G_i has no cycles and it is connected,

thus G_i is a tree by definition. Theorem 2 gives that

$$|V(G_1)| = |E(G_1)| + 1, \cdots |V(G_r)| = |E(G_r)| + 1.$$

We obtain:

$$|V(G)| = |V(G_1)| + \dots + |V(G_r)| = |E(G_1)| + \dots + |E(G_r)| + r = |E(G)| + r.$$

At the same time, we have that |V(G)| = |E(G)| + 1. Thus r = 1. Contradiction.

(d) \Longrightarrow (a) Let G = (V, E) be as in (d). Then G has a spanning tree $T \subset G$ by Theorem 1. Then V(T) = V(G) and $|E(T)| \leq |E(G)|$. Since T is a tree, |V(T)| = |E(T)| + 1, and by assumption, |V(G)| = |E(G)| + 1. Thus |E(T)| = |E(G)|, i.e., T = G. In particular, G is a tree (in fact, it is its own spanning tree).