Math 232, Winter 2017 Boris Botvinnik

Summary on Lecture 12, February 10, 2017

More on Chromatic Polynomials

Let G = (V, E) be a graph, and e be its edge with vertices e and e. We denote by e0 the graph which is obtained by removing the edge e1. Let e0 be a graph which is obtained from e0 by identifying the vertices e0 and e0, see Fig. 3. Last time we proved the following Theorem:

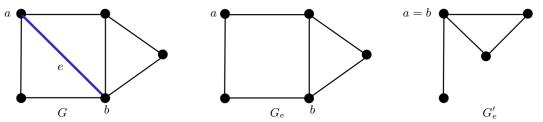


Fig. 3. The graphs G, G_e and G'_e

Theorem 1. Let G = (V, E) be a connected graph, and $e \in E$. Then

$$P(G_e, \lambda) = P(G, \lambda) + P(G'_e, \lambda).$$

Proof. Let $e = \{a, b\}$. Consider the value $P(G_e, \lambda)$. There are two possibilities here: either the vertices a and b have the same color or not. If they are of different colors, then it corresponds to a proper coloring of G. If they are the same, then it corresponds to a proper coloring of G'_e .

Lemma 1. Let T be a tree with n vertices. Then $P(T, \lambda) = \lambda(\lambda - 1)^{n-1}$.

Proof. Induction on n. If n = 1, then obviously $P(T, \lambda) = \lambda$. Let n > 1. We find an edge e such that $e = \{a, b\}$, where a is a leaf. Then T_e is a disjoint union of a tree on (n - 1) vertices and a single vertex, and T'_e is a tree on (n - 1) vertices, see Fig. 4

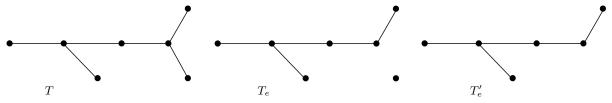


Fig. 4. The graphs T, T_e and T'_e

By induction, we have that $P(T'_e, \lambda) = \lambda(\lambda - 1)^{n-2}$, and $P(T_e, \lambda) = \lambda(\lambda - 1)^{n-2} \cdot \lambda = \lambda^2(\lambda - 1)^{n-2}$. Then

$$P(T,\lambda) = P(T_e,\lambda) - P(T_e',\lambda) = \lambda^2(\lambda-1)^{n-2} - \lambda(\lambda-1)^{n-2} = \lambda(\lambda-1)^{n-1}.$$

This completes the induction.

Lemma 2. Let C_n be a cycle on n vertices. Then $P(C_n, \lambda) = (\lambda - 1)^n + (-1)^n (\lambda - 1)$.

Proof. Induction on n. If n = 3, $C_3 = K_3$, so we check

$$P(K_3, \lambda) = \lambda(\lambda - 1)(\lambda - 2) = (\lambda - 1)^3 + (-1)^3(\lambda - 1) = (\lambda - 1)((\lambda - 1)^2 - 1)$$
$$= (\lambda - 1)(1 - 2\lambda + \lambda^2 - 1)$$
$$= \lambda(\lambda - 1)(\lambda - 2).$$

Let n > 3, and e be an edge of C_n . Then $(C_n)_e$ is just a path on n vertices, and $(C_n)'_e = C_{n-1}$ is just a cycle on (n-1) vertices. We have

$$P(C_n, \lambda) = P((C_n)_e, \lambda) - P(C_{n-1}, \lambda)$$

$$= \lambda(\lambda - 1)^{n-1} - (\lambda - 1)^{n-1} - (-1)^{n-1}(\lambda - 1)$$

$$= (\lambda - 1)^n + (-1)^n(\lambda - 1).$$

This completes the induction.

Remark. We notice that $P(C_n, 1) = 0$, and $P(C_n, 2) = 1 + (-1)^n$. Hence $P(C_n, 2) = 2$ if n is even, and $P(C_n, 2) = 0$ if n is odd. Let n = 2k + 1, then $P(C_{2k+1}, 3) = 2^{2k+1} - 2 = 2(2^{2k} - 1)$. We conclude that $\chi(C_n) = 2$ if n is even and $\chi(C_n) = 3$ if n = 2k + 1.

We define a wheel on (n+1) vertices W_{n+1} by taking a cycle on n vertices and connecting each vertex of a cycle to one more (n+1) the vertex.

Lemma 3. Let W_{n+1} be a wheel on (n+1) vertices. Then $P(W_{n+1},\lambda) = \lambda(\lambda-2)^n - (-1)^n \lambda(\lambda-2)$.

Proof. We assign an arbitrary color to the centeral vertex, then we can use $(\lambda - 1)$ colors for the remaining vertices. We obtain:

$$P(W_{n+1}, \lambda) = \lambda \left[(\lambda - 1 - 1)^n - (-1)^n (\lambda - 1 - 1) \right] = \lambda (\lambda - 2)^n - (-1)^n \lambda (\lambda - 2).$$

This proves Lemma 3.

We make two observations about the chromatic polynomial. Let G = (V, E), and

$$P(G, \lambda) = a_0 + a_1 \lambda + \dots + a_d \lambda^d$$
.

- (1) The coefficient $a_0 = 0$. Indeed, $P(G, 0) = a_0$ and at the same time is a number of proper colorings of G with 0 colors, i.e., $a_0 = 0$.
- (2) Assume that |E| > 0. Then $a_1 + a_2 + \cdots + a_d = P(G, 1) = 0$. Indeed, if G contains an edge, then we cannot give proper colorings of G with one color.

Lemma 4. Let G_1 and G_2 share a single vertex, i.e., $V(G_1) \cap V(G_2) = \{v\}$. Then

$$P(G_1 \cup G_2, \lambda) = \frac{P(G_1, \lambda) \cdot P(G_2, \lambda)}{\lambda}.$$

Proof. Let us give a coloring to G_2 . Then the vertex v receives some color λ_0 . Then we count how many ways to color G_1 so that v is colored with given color λ_0 . Let $Q(G_1; v, \lambda, \lambda_0)$ be the result. Because of the symmetry with respect to colors, $Q(G_1; v, \lambda, \lambda_0)$ is the same for any choice of λ_0 . On the other hand, by taking every value of λ_0 , we count all colorings of the graph G_1 . We conclude that $Q(G_1; v, \lambda, \lambda_0)\lambda = P(G_1, \lambda)$, or

$$Q(G_1; v, \lambda, \lambda_0) = \frac{P(G_1, \lambda)}{\lambda}$$

We obtain that all colorings of $G_1 \cup G_2$ are given by

$$\frac{P(G_1,\lambda)}{\lambda} \cdot P(G_2,\lambda) = \frac{P(G_1,\lambda) \cdot P(G_2,\lambda)}{\lambda}.$$

This completes the proof.

Lemma 5. Let G_1 and G_2 be such that $G_1 \cap G_2 = K_n$. Then

$$P(G_1 \cup G_2, \lambda) = \frac{P(G_1, \lambda) \cdot P(G_2, \lambda)}{P(K_n, \lambda)} = \frac{P(G_1, \lambda) \cdot P(G_2, \lambda)}{\lambda^{(n)}}.$$

(Recall that $\lambda^{(n)} := \lambda(\lambda - 1)(\lambda - 2) \cdots (\lambda - n + 1)$.)

Exercise. Prove Lemma 5.