Math 232, Winter 2017 Boris Botvinnik

Summary on Lecture 1, January 10, 2017

Recurrence Relations

Warm-up: linear reccurence relations.

(1) **Geometric progression.** Define a sequence $\{a_n\}$ as follows: $a_0 = A$, $a_{n+1} = da_n$, $n \ge 1$. Then we have:

$$a_1 = dA$$
, $a_2 = d^2A$, $a_3 = d^3A$, ... $a_n = d^nA$, ...

Thus we have a general formula: $a_n = d^n A$. This is a geometric progression.

Exercise. Prove formula $a_n = d^n A$ by induction.

Definition. A reccurrence relation $a_{n+1} - da_n = 0$, where d is a constant, is called *linear relation*. More general, a reccurrence relation $a_{n+1} - da_n = f(n)$, where c is a constant, and f(n) is a function, is called a *first order relation*.

(2) **Example: Bubble Sort algorithm.** Let x_1, \ldots, x_n be n real numbers. We would like to sort them out into ascending order. Here is an algorithm known as **BubbleSort**:

$\begin{array}{l} \operatorname{begin}(\mathbf{BubbleSort}) \\ \operatorname{for} \ i := 1 \ \operatorname{to} \ n-1 \ \operatorname{do} \\ \operatorname{for} \ j := n \ \operatorname{down} \ \operatorname{to} \ i+1 \ \operatorname{do} \\ \operatorname{if} \ x_j < x_{j-1} \ \operatorname{then} \\ \operatorname{begin}(\mathbf{Interchange}) \\ t := x_{j-1} \\ x_{j-1} := x_j \\ x_j := t \\ \operatorname{end}(\mathbf{Interchange}) \\ \operatorname{end}(\mathbf{BubbleSort}) \end{array}$

First, we would like to understand how does it work. Let us start with the sequence $(x_1, x_2, x_3, x_4, x_5) = (7, 9, 2, 5, 8)$.

i=1		j=5	j=4	j=3	j=2	
x_1		7	7	7	2	2
x_2		9	9	2	7	7
x_3	:=	2	2	9	9	9
x_4		5	5	5	5	5
x_5		8	8	8	8	8

i=2		j = 5	j=4	j=3	
x_1		2	2	2	2
x_2		7	7	5	5
x_3	:=	9	5	7	7
x_4		5	9	9	9
x_5		8	8	8	8

i=3		j=5	j=4	
x_1		2	2	2
x_2		5	5	5
x_3	:=	7	7	7
x_4		8	8	8
x_5		9	9	9

i=4		j=5	
x_1		2	2
x_2		5	5
x_3	:=	7	7
x_4		8	8
x_5		9	9

Here we have: for i = 1, 4 comparisons and 2 interchanges, for i = 2, 3 comparisons and 2 interchanges, for i = 3, 2 comparisons and 1 interchange, for i = 4, 1 comparison and no interchanges.

Now we denote by a_n a total number of comparisons to sort out a sequence (x_1, \ldots, x_n) . First, we can identify the smallest number: this is done when we run the algorithm for i = 1. Clearly, we use (n - 1) comparisons for that. Then we obtain the recursion:

$$a_1 = 0$$
, $a_n = a_{n-1} + (n-1)$.

We have:

$$a_1 = 0$$

 $a_2 = a_1 + (2-1) = 1$
 $a_3 = a_2 + (3-1) = 1 + 2$
 $a_4 = a_3 + (4-1) = 1 + 2 + 3$
...
 $a_n = a_{n-1} + (n-1) = 1 + 2 + 3 + \dots + (n-1)$

The answer:

$$a_n = 1 + 2 + 3 + \dots + (n-1) = \frac{(n-1)n}{2} = \frac{1}{2}(n^2 - n).$$

In that case we say that the time-complexity function of that algorithm is $O(n^2)$.

Second Order Recurrence Relations. Let $\{a_n\}$ be a Fibonacci sequence, i.e. $a_0 = 0$, $a_1 = 1$, and $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 2$. We would like to find a *closed formula* for a_n 's. Let us try $a_n = c \cdot r^n$, where $c \ne 0$ and r some real numbers. Then the relation $a_n = a_{n-1} + a_{n-2}$ gives:

$$cr^n = cr^{n-1} + cr^{n-2}, \quad n \ge 2.$$

We cancel cr^{n-2} and get the equation $r^2 = r + 1$ or $r^2 - r - 1 = 0$. We find the solutions:

$$r = \frac{1 \pm \sqrt{5}}{2}$$
, or $r_1 = \frac{1 + \sqrt{5}}{2}$, $r_2 = \frac{1 - \sqrt{5}}{2}$.

Then both sequences $c_1r_1^n$ and $c_2r_2^n$ will satisfy the relation $a_n = a_{n-1} + a_{n-2}$. Moreover, the sequence $c_1r_1^n + c_2r_2^n$ will satisfy the same relation. The we can find c_1 and c_2 .

We have for n = 0 and n = 1:

$$\begin{cases} 0 = c_1 + c_2 \\ 1 = c_1 r_1 + c_2 r_2 \end{cases} \begin{cases} c_2 = -c_1 \\ 1 = c_1 r_1 - c_1 r_2 \end{cases} \begin{cases} c_2 = -\frac{1}{r_1 - r_2} \\ c_1 = \frac{1}{r_1 - r_2} \end{cases}$$

Since $r_1 - r_2 = \sqrt{5}$, we obtain a formula for a_n :

$$a_n = c_1 r_1^n + c_2 r_2^n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$