Summary on Lecture 9, January 22, 2016

Finding an Euler Circuit

We repeat the algorithms from the previous lecture. Let $H=(V(H), E(H))$ be a graph with all verices of even degree and let $v \in V(H)$ be a vertex with positive even degree. For a graph G and an edge e, we define a graph $G \backslash\{e\}$ which has exactly the same vertices as G and the same edges except given edge e. We say that the graph $G \backslash\{e\}$ is given by removing e from $E(G)$. Here is the algorithm:

Circuit (H, v)

```
Choose an edge e with endpoint v
Let }P:=(e) and remove e from E(H
while there is an edge at the terminal vertex of P do
    Choose such an edge e and add it to the path:
    P:= (P,e) and remove it from E (H),
return P
```

Here we repeat the algorithm which produces and Euler circuit.
EulerCircuit $G=(V, E)(\operatorname{deg} v$ is even for each $v \in V)$

```
Choose a vertex v\inV (G)
Let C:=Circuit (G,v)
while length (C)<E(G) do
    Choose a vertex w in C of positive degree in G\C.
    Attach Circuit (G\C,w) to C at w to obtain a longer circuit C.
return C
```

Proof that EulerCircuit $G=(V, E)$ works. We consider the statement:
"The path C is a closed path in G with no repeated edges"
We claim that this statement is a loop invariant, i.e., if this statement holds before executing the loop, then it will remain true after executing the loop.

Indeed, let C be a closed path in G with no repeated edges, and $w \in C$ be a vertex with positive degree in $G \backslash C$, and C^{\prime} be a closed path in $G \backslash C$ with no repeated edges, then attaching C^{\prime} to C at w gives new closed path in G with no repeated edges:

Fig. 8. Attaching C^{\prime} to C at w

Now it is also clear that if the algorithm does not break down somewhere, then this algorithm will produce an Euler circuit for G, because the path C will be closed at the end of each pass through the loop, the number of edges remaining will keep going down, and the loop will terminate with all edges of G in C.

Of course, we have to show that there always be a place to attach another closed path to C, i.e., we have to explain why there exists a vertex w on C of positive degree in $G \backslash C$? In other words, can the instruction
"Choose a vertex w on C of positive degree in $G \backslash C$ "
be executed?
The answer is yes, unless the path C contains all the edges of G, in which case the algorithm stops. Here's why. Suppose that e is an edge not in C and that u is a vertex of e. If C goes through u, then u itself has positive degree in $G \backslash C$, and we can attach at u. So suppose that u is not on C. Since G is connected, there is a path in G from u to the vertex v on $C .{ }^{1}$ Let w be the first vertex in such a path that is on C (then $w \neq u$, but possibly $w=v$). Then the edges of the part of the path from u to w don't belong to C. In particular, the last one (the one to w) does not belong to C. So w is on C and has positive degree in $G \backslash C$.

Fig. 9. Finding w with positive degree in $G \backslash C$

Now we also have to show that the instruction
"Construct a simple closed path in $G \backslash C$ through w "
can be executed. Thus the proof will be complete once we show that the following algorithm works to construct the necessary paths. Now we have to show that the algorithm $\operatorname{Circuit}(H, v)$ works as well. We write it again:

Circuit (H, v)

Input: A graph H in which every vertex has even degree, and a vertex v of positive degree
Output: A simple closed path P through v

```
Choose an edge e of }H\mathrm{ with endpoint v
Let }P:=(e) and remove e from E(H
while there is an edge at the terminal vertex of P do
        Choose such an edge e and add it to the path:
        P:= (P,e) and remove it from E(H),
return P
```

Proof that Circuit (H, v) works. We want to show that the algorithm produces a simple closed path from v to v. Simplicity is automatic, because the algorithm deletes edges from further consideration as it adds them to the path P. Since v has positive degree initially, there is an edge e at v to start with. Could the algorithm get stuck someplace and not get back to v ? When P passes through a vertex w other than v, it reduces the degree of w by 2 since it removes an edge leading into w and one leading away. Thus the degree of w stays an even number. ${ }^{2}$ Hence, whenever we have chosen an edge leading into a w, there's always another edge leading away to continue P. The path must end somewhere, since no edges are used twice, but it cannot end at any vertex other than v.

[^0]
[^0]: ${ }^{1}$ Here's where we need connectedness!
 ${ }^{2}$ Here's where we use the hypothesis about degrees.

