Summary on Lecture 7, January 15, 2016

Introduction to Graph Theory. Definitions and Examples.

A graph G is given by three objects: a set $V=V(G)$ of vertices, a set $E=E(G)$ of edges and an assignment of the end vertices to every edge.

We will distinguish graphs and directed graphs (or digraphs), where each edge has a direction and its two vertices could be thought as its begining and its end.

Fig. 1. Graph and digraph
Definition 1. Let V be an non-empty set, and $E \subset V \times V$. Then the pair $G=(V, E)$ is a directed graph. If

$$
E \subset\left\{\left\{v_{0}, v_{1}\right\} \mid v_{0}, v_{1} \in V\right\}
$$

(where $\left\{\left\{v_{0}, v_{1}\right\} \mid v_{0}, v_{1} \in V\right\}$ is the set of two-element subsets of V), then the pair $G=(V, E)$ is a graph, see Fig. 1. The set $V=V(G)$ is a set of vertices, and $E=E(G)$ is a set of edges of G.

It is convenient to denote an edge e as a pair of verices $e=\left\{v, v^{\prime}\right\}$ (for a graph) and as an ordered pair $e=\left(v, v^{\prime}\right)$ (for a digraph). A loop is an edge e with the same vertices $v=v^{\prime}$. Below we assume that a graph (or digraph) G has no loops.

Fig. 2. A walk in G
Let $G=(V, E)$ be a graph, and $x, x^{\prime} \in V$ be two vertices. An $x-x^{\prime}$-walk is a finite alternatig sequence

$$
x=x_{0}, e_{1}, x_{1}, e_{2}, x_{2}, \ldots, x_{n-1}, e_{n}, x_{n}=x^{\prime}
$$

of vertices and edges, where $e_{i}=\left\{x_{i-1}, x_{i}\right\}$ for $i=1,2, \ldots, n$, see Fig. 2. If $x=x^{\prime}$, then an x - x^{\prime}-walk is a clossed walk. Otherwise, the walk is open. There are special types of walks:

- If no edge is repeated, then an $x-x^{\prime}$-walk is an $x-x^{\prime}$-trail.
- A closed trail is called a circuit.
- If no vertex is repeated, the an $x-x^{\prime}$-walk is called an $x-x^{\prime}$-path.
- If $x=x^{\prime}$, then an $x-x^{\prime}$-path is called a cycle.

Theorem 1. Let $G=(V, E)$ be a graph with $x, x^{\prime} \in V, x \neq x^{\prime}$. If there exists an $x-x^{\prime}$-trail, then there exists an $x-x^{\prime}$-path.

Proof. Since there exists a trail from x to x^{\prime}, then there exists a trail of a shortest length. Let

$$
\left\{x_{0}, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\}
$$

be such a trail. If it is not a path, then $x_{j}=x_{i}$ for some $j<i$, i.e., the shortest trail is given as

$$
\left\{x_{0}, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{j-1}, x_{j}\right\},\left\{x_{j}, x_{j+1}\right\}, \ldots,\left\{x_{i}, x_{i+1}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\}
$$

Here $x_{j}=x_{i}$, thus we can make an $x-x^{\prime}$-trail shorter:

$$
\left\{x_{0}, x_{1}\right\},\left\{x_{1}, x_{2}\right\}, \ldots,\left\{x_{j-1}, x_{j}\right\},\left\{x_{i}, x_{i+1}\right\}, \ldots,\left\{x_{n-1}, x_{n}\right\}
$$

This completes the proof.

Fig. 3. Finding a shortest trail
A graph G is path-connected if any two vertices are connected by a trail (and, consequently, by a path). Also we say that vertices $x, x^{\prime} \in V$ are in the same path component of G if there exists an $x-x^{\prime}$-trail. This relation on the set of vertices is an equivalence relation. Indeed:

- There is always a trivial $x-x$-trail, i.e., $x \sim x$ (reflexivity).
- If there is an x - x^{\prime}-trail, then there is x^{\prime} - x-trail, i.e., if $x \sim x^{\prime}$, then $x^{\prime} \sim x$ (symmetry).
- If there is an $x-x^{\prime}$-trail and there is an $x^{\prime}-x^{\prime \prime}$-trail, then there is $x-x^{\prime \prime}$-trail, i.e., if $x \sim x^{\prime}$ and $x^{\prime} \sim x^{\prime \prime}$, then $x \sim x^{\prime \prime}$ (transitivity).

This equivalence relation breakes a graph G into path-components: $G=G_{1} \sqcup \cdots G_{s}$, such that each graph G_{i} is path-connected.

We say that two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are isomorphic if there are bijections $\phi: V \rightarrow V^{\prime}$ and $\Phi: E \rightarrow E^{\prime}$, such that for each edge $e=\left\{v, v^{\prime}\right\} \in E$,

$$
\Phi(e)=\Phi\left(\left\{v, v^{\prime}\right\}\right)=\left\{\phi(v), \phi\left(v^{\prime}\right)\right\}
$$

Fig. 4. Two isomorphic graphs
It is often useful to count the number of edges attached to a particular vertex. To get the right count, we need to treat loops differently from edges with two distinct vertices. We define $\operatorname{deg}(v)$, the degree of the vertex $v \in V(G)$,
to be the number of 2 -vertex edges with v as a vertex plus twice the number of loops with v as vertex. If you think of a picture of G as being like a road map, then the degree of v is simply the number of roads you can take to leave v, with each loop counting as two roads.

The number $D_{k}(G)$ of vertices of degree k in G is an isomorphism invariant, as is the degree sequence $\left(D_{0}(G), D_{1}(G), D_{2}(G), \ldots\right)$.

Fig. 5. Isomorphic and non-isomorphic graphs
Exercise 1. Find particular isomorphisms for the graphs G_{1}, G_{2} and G_{3} from Fig. 5. Show that the graphs G_{1}, G_{2} and G_{3} are not isomorphic to the graph G_{4}.

Remark. Notice that the graphs G_{1}, G_{2}, G_{3} and G_{4} have the same number of vertices of the same degree. Thus having the same degree sequences does not guarantee that graphs are isomorphic.

