
Math 232, Winter 2016 Boris Botvinnik

Summary on Lecture 4, January 8, 2016

Second Order Recurrence Relations (continuation)

Example: legal arithmetic expressions without parenthesis. In most computing languages, it important
to use “legal arithmetic expressions without parenthesis”. These expressions are made up out of the digits 0,1,. . . ,
9 and binary symbols +, ∗, / . For example, the expressions 7 + 8, 5 + 7∗3, 33∗7 + 4 + 6∗4 are legal expressions,
and the expressions /7 + 8, 5 + 7 ∗ 3+, 33 ∗ 7 + /4 + 6 ∗ 4 are not.

We denote by an the number of legal expressions of length n . Then a1 = 10 since the only legal expressions
of length 1 are the digits 0, 1, . . . , 9. Then a2 = 100 which accounts for the expressions 00, 01, . . . , 99.

Let n ≥ 3. We observe:

(1) Let x be an arithmetic legal expression of (n − 1) symbols. Then the last symbol must be a digit. We
add one more digit to the right of x and obtain 10x more legal expressions of the length n .

(2) Let y be an arithmetic legal expression of (n− 2) symbols. Then we can add to the right of y one of the
following 29 2-symbol expressions: +0, +1, . . . , +9, ∗0, ∗1, . . . , ∗9, /1, . . . , /9 (no division by 0 is allowed).

We obtain the recurrence relation: a0 = 10, a1 = 10, an = 10an−1 + 29an−2 for n ≥ 3.

Exercise: Find a closed formula for the recurrence relation: a0 = 10, a1 = 10, an = 10an−1 + 29an−2 , n ≥ 3.

Example. We would like to find a number of binary sequences of the length n without any consecutive 0’s.
Let an denote the number of such sequences of length n ≥ 1. Clearly, if n = 1, we have 0, 1, i.e., a1 = 2, if

n = 2, we have the sequences 01, 10, 11, i.e., a2 = 3.
Let n ≥ 3. Let x1 · · ·xn−2xn−1xn be a sequence like that. There are two cases:

(1) The last symbol xn = 1. Then the sequence x1 · · ·xn−2xn−1 has no consecutive 0’s.

(2) The last symbol xn = 0. Then xn−1 = 1, and the sequence x1 · · ·xn−2 has no consecutive 0’s.

Thus we conclude that an = an−1 + an−2 . Also we notice that the initial conditions a1 = 2, a2 = 3 could be
replaced by a0 = 1, a1 = 2. Then a2 = a1 + a0 = 3.

Exercise: Find a closed formula for the recurrence relation: a0 = 1, a1 = 2, an = an−1 + an−2 for n ≥ 2.

The case of complex roots. Let z = x+ iy ∈ C be a complex number. Then we let |z| =
√
x2 + y2 , and we

can write z as
z = |z|(cos θ + i sin θ), cos θ =

x

|z|
, sin θ =

y

|z|
.

There is a standard notation eiθ := cos θ + i sin θ . There is a remarkable formula (DeMoivre Theorem):

(cos θ + i sin θ)n = cosnθ + i sinnθ, or (eiθ)n = einθ

We prove it by induction. Clearly this formula holds for n = 1. Assume it holds for n = k . Then we have:

(cos θ + i sin θ)k+1 = (cos θ + i sin θ)k(cos θ + i sin θ)

= (cos kθ + i sin kθ)(cos θ + i sin θ)

= (cos kθ cos θ − sin kθ sin θ) + i(cos kθ sin θ + sin kθ cos θ)

= cos(k + 1)θ + i sin(k + 1)θ.
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Here we used the formulas:
cos(α+ β) = cosα cosβ − sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ

Example. Let a0 = 1, a1 = 2, and an = 2an−1−2an−2 . Then again, we are looking for a solution as an = crn ,
c 6= 0. We have substitute an = crn to our recurrence relation:

crn = 2crn−1 − 2crn−2 or r2 − 2r + 2 = 0.

We find the solutions of the characteristic equation:

r1,2 =
2±
√

4− 8

2
=

2±
√
−4

2
=

2± 2
√
−1

2
= 1± i.

Then we have:
r1 = 1 + i =

√
2( 1√

2
+ i 1√

2
) =

√
2(cos π4 + i sin π

4 ),

r2 = 1− i =
√

2( 1√
2
− i 1√

2
) =

√
2(cos π4 − i sin π

4 ).

Now we are looking for a solution in the form an = c1r
n
1 + c2r

n
2 . We notice the following:

an = c1(1 + i)n + c2(1− i)n

= c1
(√

2(cos π4 + i sin π
4 )
)n

+ c2
(√

2(cos π4 − i sin π
4 )
)n

= c1
(√

2
)n

(cos nπ4 + i sin nπ
4 ) + c2

(√
2
)n

(cos nπ4 − i sin nπ
4 )

=
(√

2
)n

(K1 cos nπ4 +K2 sin nπ
4 ),

where K1 = c1 + c2 , K2 = i(c1 − c2). Clearly we would like to find real values of K1 and K2 . We substitute
n = 0 and n = 1 to get the system:{

K1 cos 0 +K2 sin 0 = a0 = 1√
2(K1 cos π4 +K2 sin π

4 ) = a1 = 2
or

{
K1 = 1
K1 +K2 = 2

or

{
K1 = 1
K2 = 1

We obtain the answer:

an =
(√

2
)n

(cos nπ4 + sin nπ
4 )

General Case. Now we assume that we have a second order recurrence relation, i.e. a0 , a1 , are given and
an = Aan−1 + Ban−2 , n ≥ 2, where the coefficients A and B are real numbers (in fact, they are integers in
all our examples). Then the characteristic equation is given as r2 − Ar − B = 0. Assume that the roots r1 , r2
are complex. Obviously, it means that r1 and r2 are conjugate, i.e., we can write r1 = ρ(cos θ + i sin θ), and
r2 = ρ(cos θ − i sin θ). Thus we may look for a solution for an in the form:

an = c1r
n
1 + c2r

n
2

= c1ρ
n(cosnθ + i sinnθ) + c2ρ

n(cosnθ − i sinnθ)

= ρn((c1 + c2) cosnθ + i(c1 − c2) sinnθ)

= ρn(K1 cosnθ +K2 sinnθ).

Here K1 = (c1+c2) and K2 = i(c1−c2). In particular, it means that the expression an = ρn(K1 cosnθ+K2 sinnθ)
satisfies the recurrence relation we started with. We also notice that K1 and K2 are assumed to be real. Since
a0 and a1 are given, we find them by substituting n = 0 and n = 1:{

K1 cos 0 +K2 sin 0 = a0
ρ(K1 cos θ +K2 sin θ) = a1

or

{
K1 = a0
ρ(K1 cos θ +K2 sin θ) = a1
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We notice that the system always has a solution provided ρ sin θ 6= 0 for arbitrary initial coefficients a0 and a1 .
On the other hand, the condition ρ sin θ = 0 means that either ρ = 0 or sin θ = 0. Each of those imply that the
roots r1 r2 are real.

We summarize the above discussion:

Theorem 3. Let a0 and a1 are given, and an = Aan−1 + Ban−2 be a recurrence relation, n ≥ 2, where A,B
are non-zero real constants. Assume that the characteristic equation r2 −Ar −B = 0 has two complex roots

r1 = ρ(cos θ + i sin θ), r2 = ρ(cos θ − i sin θ),

Then an = ρn(K1 cosnθ +K2 sinnθ), where the coefficients K1 , K2 are determined by solving the system{
K1 = a0
ρ(K1 cos θ +K2 sin θ) = a1
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