Summary on Lecture 24, March 4, 2016

Optimal spanning trees: Prim's Algorithm in more detail

For a given finite connected graph G = (V(g), E(G)), we are looking for a spanning tree $T \subset G$ of minimal weight.

Recall Prim's algorithm:

 $\begin{array}{l} \textbf{Prim's Algorithm}\left(G=(V(G),E(G)), \mbox{ wt }:E(G)\rightarrow(0,\infty)\right)\\ \textbf{Input:} A finite weighted connected graph (G, wt) with edges listed in any order Output: A set E of edges of an optimal spanning tree for G)\\ \textbf{Set } E=\emptyset$. Choose w in $V(G)$ and set $V:=\{w\}$. while $V=V(G)$ do $$ Choose an edge $\{u,v\}$ in $E(G)$ of smallest possible weight $with $u\in V$ and $v\in V(G)\setminus V$. $$ Put $\{u,v\}$ in E and put v in V. $$ return E $$ \end{array}$

Theorem. Prim's algorithm produces an optimal spanning tree for a connected weighted graph.

Proof. Theorem 1 and the way the algorithm **Tree** works, show that the graph the Prim's algorithm is producing is indeed a spanning tree. We have to show that it is an optimal one. We consider the statement

 $\mathbf{S} :=$ 'The graph T is contained in an optimal spanning tree of G

It holds at the beginning since T is a single vertex. We claim that **S** is an invariant of the while loop. Suppose that, at the beginning of some pass through the while loop, T is contained in the minimum spanning tree T^* of G. Suppose that the algorithm now chooses the edge $\{u, v\}$. If $\{u, v\} \in E(T^*)$, then the new T is still contained in T^* , which is wonderful. Suppose not. Because T^* is a spanning tree, there is a path in T^* from u to v. Since $u \in V$ and $v \notin V$, there must be some edge in the path that joins a vertex z in V to a vertex $w \in V(G) \setminus V$.

Since Prim's algorithm chose $\{u, v\}$ instead of $\{z, w\}$, we have $wt\{u, v\} \le wt\{z, w\}$. Take the edge $\{z, w\}$ out of $E(T^*)$ and replace it with $\{u, v\}$. The new graph T^{**} is still connected, so it's a tree. Since $W(T^{**}) \le W(T^*)$, the graph T^{**} is also an optimal spanning tree, and T^{**} contains the new T. At the end of the loop, T is still contained in some optimal spanning tree, as we wanted to show.