Math 232, Winter 2016 Boris Botvinnik
Summary on Lecture 23, March 2, 2016

Optimal spanning trees: Kruskal’s Algorithm in more detail

For a given finite connected graph G = (V(g), E(G)), we are looking for a spanning tree T C G of minimal
weight. Let |E(G)| = m. We assume that the edges eq,..., e, have been initially sorted so that

wt(er) <wt(es) < -+ < wt(ey,).

Recall Krushkal’s algorithm:
Kruskal’s Algorithm (G = (V(G), E(G)), wt: E(G) — (0,00))
Input: A finite weighted connected graph (G,wt) with edges listed in order of increasing weight
Output: A set F of edges of an optimal spanning tree for G)
Set E=0, for j=1 to |E(G)| do

if FU{e;} is acyclic then

Put e; in E.
return E

Theorem 2. Let G be a finite connected weighted graph. Then Kruskal’s algorithm produces an optimal spanning
tree.

Proof. We consider the statement:
S:= ‘‘The set of edges F is contained in an optimal spanning tree of G’

This statement is clearly true initially when the set E is empty. We assume the statment S is true at the start of
the j-th pass through the loop, so that E is contained in some optimal spanning tree T, i.e., E C E(T). There
are two cases here:

(1) The graph E U {e;} is not acyclic.
(2) The graph E U {e;} is acyclic.
In the case (1), we do not change F, and the statement S holds. Then we move to the next iteration.

Consider the case (2). We would like to find an optimal tree 7% such that EU{e;} C T*. If ¢; is in T, then we
can take T* = T'. Now assume that e; is not in T'. Recall that since T' is a spanning tree for G, V(T') = V(G).
Thus if e; is not in T, the graph T'U {e;} is not a tree anymore, and the edge e; must be a part of some cycle
C in TU{e;}. By construction, the graph E U{e;} is acyclic, the cycle C' must contain some edge f in T' with
fin T\ (EU{e;}). Indeed this is true, otherwise all edges of the cycle C' are in E U {e;}, which is acyclic.

j— N/
—

= (T\{fH) U ies}

Fig. 4. Changing an optimal tree T to T

We remove the edge f from the tree T' and construct the tree

= (T\{fP) U ies}.

We notice that T* is connected, it spans G and it is a tree since |E(T*)| = |[V(T*)| + 1 (we delete an edge and
than add an adge to the tree T'). Clearly, T* is a spanning tree. Since the edge f has not yet been picked to be
adjoined to E, it must be that e; has first chance; i.e., wt(e;) < wt(f). Since

W(T™) = W(T) + wt(e;) — wt(f) < W(T),

and T is an optimal spanning tree, in fact we have W (T*) = W(T). Thus T* is, indeed, an optimal spanning
tree, as desired.

Since E is always contained in an optimal spanning tree, it only remains to show that the graph with edge set
E and vertex set V(@) is connected when the algorithm stops. Let u and v be two vertices of G. Since the
original graph G is connected, there is a path from u to v in G. If some edge f on that path is not in E, then
the graph E U {f} contains a cycle. Indeed, otherwise f would have been chosen in its turn. Thus the edge f
can be replaced in the path by the part of the cycle that’s in E'. Making necessary replacements in this way, we
obtain a path from u to v lying entirely in E. O

Remark. We notice that Kruskal’s algorithm works even if G has loops or parallel edges. It never chooses
loops, and it will select the first edge listed in a collection of parallel edges. It is not even necessary for G to be
connected in order to apply Kruskal’s algorithm. In the general case the algorithm produces an optimal spanning
forest made up of minimum spanning trees for the various components of G. O

Remark. In the process of attaching one more edge, Kruskal’s algorithm has to check if the graph E U {e;} is
acyclic or not. Here we can use the algorithm Forest (H) to produce a spanning forest of a graph H = EU{e;}.
If the reasulting forest contains the same number of edges as E(H), then H is acyclic, and it does contain a
cycle otherwise. O

