
Math 232, Winter 2016 Boris Botvinnik

Summary on Lecture 23, March 2, 2016

Optimal spanning trees: Kruskal’s Algorithm in more detail

For a given finite connected graph G = (V (g), E(G)), we are looking for a spanning tree T ⊂ G of minimal
weight. Let |E(G)| = m . We assume that the edges e1, . . . , em have been initially sorted so that

wt(e1) ≤ wt(e2) ≤ · · · ≤ wt(em).

Recall Krushkal’s algorithm:

Kruskal’s Algorithm(G = (V (G), E(G)), wt : E(G)→ (0,∞))
Input: A finite weighted connected graph (G,wt) with edges listed in order of increasing weight
Output: A set E of edges of an optimal spanning tree for G)
Set E = ∅, for j = 1 to |E(G)| do

if E ∪ {ej} is acyclic then

Put ej in E .

return E

Theorem 2. Let G be a finite connected weighted graph. Then Kruskal’s algorithm produces an optimal spanning
tree.

Proof. We consider the statement:

S := ‘‘The set of edges E is contained in an optimal spanning tree of G’’

This statement is clearly true initially when the set E is empty. We assume the statment S is true at the start of
the j -th pass through the loop, so that E is contained in some optimal spanning tree T , i.e., E ⊂ E(T). There
are two cases here:

(1) The graph E ∪ {ej} is not acyclic.

(2) The graph E ∪ {ej} is acyclic.

In the case (1), we do not change E , and the statement S holds. Then we move to the next iteration.

Consider the case (2). We would like to find an optimal tree T ∗ such that E ∪ {ej} ⊂ T ∗ . If ej is in T , then we
can take T ∗ = T . Now assume that ej is not in T . Recall that since T is a spanning tree for G , V (T) = V (G).
Thus if ej is not in T , the graph T ∪ {ej} is not a tree anymore, and the edge ej must be a part of some cycle
C in T ∪{ej} . By construction, the graph E ∪{ej} is acyclic, the cycle C must contain some edge f in T with
f in T \ (E ∪ {ej}). Indeed this is true, otherwise all edges of the cycle C are in E ∪ {ej} , which is acyclic.

ej f
T T ∗ := (T \ {f}) ∪ {ej}

Fig. 4. Changing an optimal tree T to T ∗

We remove the edge f from the tree T and construct the tree

T ∗ := (T \ {f}) ∪ {ej}.

1

We notice that T ∗ is connected, it spans G and it is a tree since |E(T ∗)| = |V (T ∗)|+ 1 (we delete an edge and
than add an adge to the tree T). Clearly, T ∗ is a spanning tree. Since the edge f has not yet been picked to be
adjoined to E , it must be that ej has first chance; i.e., wt(ej) ≤ wt(f). Since

W (T ∗) = W (T) + wt(ej)− wt(f) ≤W (T),

and T is an optimal spanning tree, in fact we have W (T ∗) = W (T). Thus T ∗ is, indeed, an optimal spanning
tree, as desired.

Since E is always contained in an optimal spanning tree, it only remains to show that the graph with edge set
E and vertex set V (G) is connected when the algorithm stops. Let u and v be two vertices of G . Since the
original graph G is connected, there is a path from u to v in G . If some edge f on that path is not in E , then
the graph E ∪ {f} contains a cycle. Indeed, otherwise f would have been chosen in its turn. Thus the edge f
can be replaced in the path by the part of the cycle that’s in E . Making necessary replacements in this way, we
obtain a path from u to v lying entirely in E . �

Remark. We notice that Kruskal’s algorithm works even if G has loops or parallel edges. It never chooses
loops, and it will select the first edge listed in a collection of parallel edges. It is not even necessary for G to be
connected in order to apply Kruskal’s algorithm. In the general case the algorithm produces an optimal spanning
forest made up of minimum spanning trees for the various components of G . ♦

Remark. In the process of attaching one more edge, Kruskal’s algorithm has to check if the graph E ∪ {ej} is
acyclic or not. Here we can use the algorithm Forest(H) to produce a spanning forest of a graph H = E ∪{ej} .
If the reasulting forest contains the same number of edges as E(H), then H is acyclic, and it does contain a
cycle otherwise. ♦

2

