Summary on Lecture 23, March 2, 2016

Optimal spanning trees: Kruskal's Algorithm in more detail

For a given finite connected graph G = (V(g), E(G)), we are looking for a spanning tree $T \subset G$ of minimal weight. Let |E(G)| = m. We assume that the edges e_1, \ldots, e_m have been initially sorted so that

$$\operatorname{wt}(e_1) \leq \operatorname{wt}(e_2) \leq \cdots \leq \operatorname{wt}(e_m).$$

Recall Krushkal's algorithm:

Kruskal's Algorithm $(G = (V(G), E(G)), wt : E(G) \to (0, \infty))$ Input: A finite weighted connected graph (G, wt) with edges listed in order of increasing weight Output: A set E of edges of an optimal spanning tree for G) Set $E = \emptyset$, for j = 1 to |E(G)| do if $E \cup \{e_j\}$ is acyclic then Put e_j in E. return E

Theorem 2. Let G be a finite connected weighted graph. Then Kruskal's algorithm produces an optimal spanning tree.

Proof. We consider the statement:

```
\mathbf{S} := 'The set of edges E is contained in an optimal spanning tree of G''
```

This statement is clearly true initially when the set E is empty. We assume the statement **S** is true at the start of the *j*-th pass through the loop, so that E is contained in some optimal spanning tree T, i.e., $E \subset E(T)$. There are two cases here:

- (1) The graph $E \cup \{e_i\}$ is not acyclic.
- (2) The graph $E \cup \{e_i\}$ is acyclic.

In the case (1), we do not change E, and the statement **S** holds. Then we move to the next iteration.

Consider the case (2). We would like to find an optimal tree T^* such that $E \cup \{e_j\} \subset T^*$. If e_j is in T, then we can take $T^* = T$. Now assume that e_j is not in T. Recall that since T is a spanning tree for G, V(T) = V(G). Thus if e_j is not in T, the graph $T \cup \{e_j\}$ is not a tree anymore, and the edge e_j must be a part of some cycle C in $T \cup \{e_j\}$. By construction, the graph $E \cup \{e_j\}$ is acyclic, the cycle C must contain some edge f in T with f in $T \setminus (E \cup \{e_j\})$. Indeed this is true, otherwise all edges of the cycle C are in $E \cup \{e_j\}$, which is acyclic.

Fig. 4. Changing an optimal tree T to T^*

We remove the edge f from the tree T and construct the tree

$$T^* := (T \setminus \{f\}) \cup \{e_j\}$$

We notice that T^* is connected, it spans G and it is a tree since $|E(T^*)| = |V(T^*)| + 1$ (we delete an edge and than add an adge to the tree T). Clearly, T^* is a spanning tree. Since the edge f has not yet been picked to be adjoined to E, it must be that e_i has first chance; i.e., $wt(e_i) \leq wt(f)$. Since

$$W(T^*) = W(T) + \mathsf{wt}(e_i) - \mathsf{wt}(f) \le W(T),$$

and T is an optimal spanning tree, in fact we have $W(T^*) = W(T)$. Thus T^* is, indeed, an optimal spanning tree, as desired.

Since E is always contained in an optimal spanning tree, it only remains to show that the graph with edge set E and vertex set V(G) is connected when the algorithm stops. Let u and v be two vertices of G. Since the original graph G is connected, there is a path from u to v in G. If some edge f on that path is not in E, then the graph $E \cup \{f\}$ contains a cycle. Indeed, otherwise f would have been chosen in its turn. Thus the edge f can be replaced in the path by the part of the cycle that's in E. Making necessary replacements in this way, we obtain a path from u to v lying entirely in E.

Remark. We notice that Kruskal's algorithm works even if G has loops or parallel edges. It never chooses loops, and it will select the first edge listed in a collection of parallel edges. It is not even necessary for G to be connected in order to apply Kruskal's algorithm. In the general case the algorithm produces an optimal spanning forest made up of minimum spanning trees for the various components of G.

Remark. In the process of attaching one more edge, Kruskal's algorithm has to check if the graph $E \cup \{e_j\}$ is acyclic or not. Here we can use the algorithm **Forest** (*H*) to produce a spanning forest of a graph $H = E \cup \{e_j\}$. If the reasulting forest contains the same number of edges as E(H), then *H* is acyclic, and it does contain a cycle otherwise.