Summary on Lecture 2, January 5, 2016

Recurrence Relations

Let $a_{n}=A a_{n-1}+B a_{n-2}$ be a second order recurrence relation. Then the equation $r^{2}-A r-B=0$ is called a characteristic equation of that relation.

We are ready to prove the following result:
Theorem 1. Let a_{0} and a_{1} are given, and $a_{n}=A a_{n-1}+B a_{n-2}$ be a second order recurrence relation, $n \geq 2$, where A, B are non-zero constants. Assume that the characteristic equation $r^{2}-A r-B=0$ has two real different real solutions r_{1} and r_{2}. Then $a_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$, where the constants c_{1} and c_{2} are determined by solving the system

$$
\left\{\begin{aligned}
a_{0} & =c_{1}+c_{2} \\
a_{1} & =c_{1} r_{1}+c_{2} r_{2}
\end{aligned}\right.
$$

Proof. Indeed, we look for a solution $a_{n}=c r^{n}$, then the recurrence realtion $a_{n}=A a_{n-1}+B a_{n-2}$ gives the characteristic equation $r^{2}-A r-B=0$. By assumption, there are two two different real solutions, r_{1} and r_{2} of $r^{2}-A r-B=0$. Then the sum $c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$ will satisfy the recurrence. Finally, we notice that the system $\left\{\begin{array}{l}a_{0}=c_{1}+c_{2} \\ a_{1}=c_{1} r_{1}+c_{2} r_{2}\end{array}\right.$ always have a unique solution if $r_{1} \neq r_{2}$ (Explain why).
Next question: How to solve this problem if $r_{1}=r_{2}$?
Example. Consider the sequence defined by $a_{0}=1, a_{1}=-3$, and $a_{n}=6 a_{n-1}-9 a_{n-2}$ for $n \geq 2$. The we $\operatorname{try} a_{n}=c r^{n}$ with $c \neq 0$ to get the following characteristic equation: $r^{2}-6 r+9=0$. We obtain the solution $r=r_{1}=r_{2}=3$. We notice that the $a_{n}=c_{1} r^{n}+c_{2} n r^{n}$ satisfies the relation $a_{n}=6 a_{n-1}-9 a_{n-2}$. We notice that $6=2 r$ and $9=r^{2}$. Then, indeed, we have:

$$
\begin{aligned}
c_{1} r^{n}+c_{2} n r^{n} & =6 c_{1} r^{n-1}+6 c_{2}(n-1) r^{n-1}-9 c_{1} r^{n-2}-9 c_{2}(n-2) r^{n-2} \\
& =c_{1}\left(6 r^{n-1}-9 r^{n-2}\right)+c_{2}\left(2(n-1) r \cdot r^{n-1}-(n-2) r^{2} r^{n-2}\right) \\
& =c_{1}\left(6 r^{n-1}-9 r^{n-2}\right)+c_{2} n r^{n}
\end{aligned}
$$

This is true since $r^{n}=6 r^{n-1}-9 r^{n-2}$. Thus $a_{n}=c_{1} r^{n}+c_{2} n r^{n}=c_{1} 3^{n}+c_{2} 3^{n}$ satisfies the relation $a_{n}=$ $6 a_{n-1}-9 a_{n-2}$. Then for $n=0,1$, we obtain:

$$
\left\{\begin{array} { r l }
{ 1 } & { = c _ { 1 } } \\
{ - 3 } & { = 3 c _ { 1 } + 3 c _ { 2 } }
\end{array} \Longrightarrow \left\{\begin{array} { r l l }
{ 1 } & { = c _ { 1 } } \\
{ - 1 } & { = 1 + c _ { 2 } }
\end{array} \Longrightarrow \left\{\begin{array}{rll}
1 & =c_{1} \\
-2 & =c_{2}
\end{array}\right.\right.\right.
$$

We obtain the answer $a_{n}=3^{n}-2 n 3^{n}$. This example is a particular case of the following Theorem:
Theorem 2. Let a_{0} and a_{1} are given, and $a_{n}=A a_{n-1}+B a_{n-2}$ be a recurrence relation, $n \geq 2$, where A, B are non-zero constants. Assume that the characteristic equation $r^{2}-A r-B=0$ has one real solution $r \neq 0$ (i.e., $r_{1}=r_{2}=r$) Then $a_{n}=c_{1} r^{n}+c_{2} n r^{n}$, where the constants c_{1} and c_{2} are determined by solving the system $\left\{\begin{array}{l}a_{0}=c_{1} \\ a_{1}=c_{1} r+c_{2} r\end{array}\right.$

Exercise: Prove Theorem 2.

