Summary on Lecture 17, February 15, 2016

Weighted Trees and Huffman algorithm

Let $L=\left(w_{1}, \ldots, w_{t}\right)$ be a list of weights. Recall that we say that a binary weighted tree T is optimal for the weights $L=\left(w_{1}, \ldots, w_{t}\right)$ if $W(T) \leq W\left(T^{\prime}\right)$ for any weighted tree T^{\prime} with the same weights $L=\left(w_{1}, \ldots, w_{t}\right)$.

Here is the algorithm to find an optimal tree for a given list of weights:

```
Huffman(L = { w
{Input: A list of weights: L}={\mp@subsup{w}{1}{},\mp@subsup{w}{2}{},\ldots,\mp@subsup{w}{k}{}},k\geq2
{Output: an optimal tree T(L)}
if k=2 then
    return the tree
```



```
else
    Choose two smallest weights }u\mathrm{ and }v\mathrm{ of L.
    Make a list L' by removing the elements }u\mathrm{ and v and adding the element u+v.
    Let T(L'):=Huffman (L').
    Form a tree T(L) from T(L') by replacing a leaf of weight u+v
    by a subtree with two leaves of weights }u\mathrm{ and }v\mathrm{ .
    return T(L).
```

Now we returen to the example above to merge the lists $L_{1}, L_{2}, L_{3}, L_{4}$, and L_{5} with $\left|L_{1}\right|=15,\left|L_{2}\right|=22$, $\left|L_{3}\right|=31,\left|L_{4}\right|=34$, and $\left|L_{5}\right|=42$. We run the algorithm $\operatorname{Huffman}(L=\{15,22,31,34,42\})$ and we get the following weighted tree:

Fig. 3.
We get the the following total number of comparisons:
$W(T)-4=3 \cdot\left|L_{1}\right|+3 \cdot\left|L_{2}\right|+2 \cdot\left|L_{3}\right|+2 \cdot\left|L_{4}\right|+2 \cdot\left|L_{1}\right|-4=3 \cdot 15+3 \cdot 22+2 \cdot 31+2 \cdot 34+2 \cdot 42-4=321$.
Now we will show that the algorithm $\operatorname{Huffman}(L)$ indeed works. Let $w_{1}, w_{2}, \ldots, w_{k}$ be the weights, and let T be an optimal tree with those weights. We denote by ℓ_{j} the level of the vertex labeled by w_{j}.

Lemma 1. Let T be an optimal tree with the weights $w_{1}, w_{2}, \ldots, w_{k}$. Then if $w_{i}<w_{j}$, then $\ell_{i} \geq \ell_{j}$.

Proof. Assume that $w_{i}<w_{j}$ and $\ell_{i}<\ell_{j}$ for an optimal tree T. We denote by T^{\prime} the tree which is obtained from T by interchanging the weights w_{i} and w_{j}. We obtain:

$$
W(T)-W\left(T^{\prime}\right)=w_{i} \ell_{i}+w_{j} \ell_{j}-w_{i} \ell_{j}-w_{j} \ell_{i}=\left(w_{j}-w_{i}\right)\left(\ell_{j}-\ell_{i}\right)>0
$$

Thus $W(T)>W\left(T^{\prime}\right)$, i.e. T is not an optimal tree. Contradiction. Hence $w_{i}<w_{j}$ implies $\ell_{i} \geq \ell_{j}$ for an optimal tree.

Lemma 2. Let $w_{1} \leq w_{2} \leq \cdots \leq w_{k}$. Then there exists an optimal tree for those weight such that w_{1} and w_{2} are at the lowest level ℓ.

Proof. Let T be an optimal tree, and w_{i} and w_{j} are at the lowest level ℓ. If $w_{1}<w_{i}$, then $\ell_{1} \geq \ell$. This means that $\ell_{1}=\ell$ since ℓ is the lowest level. If $w_{1}=w_{j}$, then we can interchange the weights w_{1} and w_{j} without changing the weight of the tree. Similarly, by interchanging w_{2} and w_{j} if necessary, we obtain an optimal tree with w_{1} and w_{2} at the lowest level.
Now we are ready to prove that the algorithm Huffman (L) indeed works.
Theorem. Let $w_{1} \leq w_{2} \leq w_{3} \leq \cdots \leq w_{k}$, and T_{0} be an optimal tree for the weights $w_{1}+w_{2}, w_{3}, \ldots w_{k}$. Then the tree T, obtained from T_{0} by replacing the leaf $w_{1}+w_{2}$ by a subtree with the weights w_{1} and w_{2}, is an optimal tree for the weights $w_{1} \leq w_{2} \leq w_{3} \leq \cdots \leq w_{k}$.

Proof. Clearly, there are only finite number of binary trees with k leaves. Then it means that there exists an optimal tree T^{\prime} with given weights $w_{1} \leq w_{2} \leq w_{3} \leq \cdots \leq w_{k}$. By Lemma 2, we can assume that the weights w_{1} and w_{2} have both the lowest weight ℓ. Moreover, since T is a binary tree, we can assume that w_{1} and w_{2} are children of the same parent. Indeed, if w_{1} has a sibling w_{i} with $i>2$, we interchange w_{2} and w_{i}. Let p be a common parent of w_{1} and w_{2}.
We denote by T_{p} the subtree with the root p and two children w_{1} and w_{2}. Then the weight of the tree remains the same. Now we denote by T_{0}^{\prime} the tree obtained from T^{\prime} by replacing the subtree T_{p} by a leaf with the weight $w_{1}+w_{2}$. Now we find that

$$
W\left(T^{\prime}\right)-W\left(T_{0}^{\prime}\right)=\ell\left(w_{1}+w_{2}\right)-(\ell-1)\left(w_{1}+w_{2}\right)=w_{1}+w_{2}
$$

Thus $W\left(T^{\prime}\right)=W\left(T_{0}^{\prime}\right)+\left(w_{1}+w_{2}\right)$. Similary, we obtain that $W(T)=W\left(T_{0}\right)+w_{1}+w_{2}$. Since T^{\prime} is an optimal tree for the weights $w_{1} \leq w_{2} \leq w_{3} \leq \cdots \leq w_{k}$, we obtain that $W(T) \leq W\left(T^{\prime}\right)$, or we have that

$$
W\left(T_{0}^{\prime}\right)+\left(w_{1}+w_{2}\right) \leq W\left(T_{0}\right)+w_{1}+w_{2}
$$

Thus $W\left(T_{0}^{\prime}\right) \leq W\left(T_{0}\right)$. Since T_{0} is an optimal tree, we obtain that $W\left(T_{0}^{\prime}\right) \geq W\left(T_{0}\right)$, i.e. $W\left(T_{0}\right)=W\left(T_{0}^{\prime}\right)$, i.e. T_{0}^{\prime} is an optimal tree. This shows that the algorithm Huffman (L) delivers an optimal tree.

Exercise. Show that the complexity of the algorithm $\operatorname{Huffman}(L)$ is at least $O\left(k^{2}\right)$, where k is the number of weights. Find a way to improve it to $O\left(k \log _{2} k\right)$.

Exercise. Construct an optimal binary tree for the following sets of weights and compute the weight of the optimal tree.
(a) $L=\{1,3,4,6,9,13\}$,
(b) $L=\{1,3,5,6,10,13,16\}$,
(c) $L=\{2,4,5,8,13,15,18,25\}$,
(d) $L=\{1,2,3,5,8,13,21,34\}$.

