
Math 232, Winter 2016 Boris Botvinnik

Summary on Lecture 15, February 10, 2016

More on Rooted Trees

Let m ≥ 1. Recall that a rooted tree (T, r) is a complete m-ary tree if every vertex of T has either m children
or no children. Mostly we are interested in the case m = 2.

Lemma 1. Let (T, r) be a complete binary tree. Then |V (T )| is odd.

Exercise. Prove Lemma 1 by induction.

We would like to count how many complete binary trees are there with 2n + 1 vertices.

Let (T, r) be a complete binary tree with 2n + 1 vertices. We use preorder listing to give a a list of all vertices
(starting with the root): rv1v2 . . . v2n . We notice that every move from vi to vi+1 has a direction: its either left
(L) or right (R). Hence the list rv1v2 . . . v2n gives a sequence of 2n L’s and R’s. Then we notice:

• We visit first the “left” child, then the “right” one. Thus if we count how many L’s and R’s from the
beginning to a given spot, we’ll get that the number of L’s is greater or equal to the number of R’s.

• There are n L’s and n R’s.

We have seen this problem before, and conclude that the number of such listings (and, consequently, the number
of complete binary graphs with 2n + 1 vertices) is nothing but the Catalan number, namely, 1

n+1

(
2n
n

)
.

Now let G = (V,E) be a connected graph without loops and multiple edges. We assume that the vertices of G
are ordered, i.e., V = {v1, . . . , vn} . We would like to find a spanning tree (T, r) (which is depth-first ordered
rooted tree).

Here is a pseudocode for a recursive version of the Depth-First-Search algorithm:

Depth-First-Search(G, v)
Let v := v1. Put v to the list T
For all edges from v to w in E(G) do

if w is not in T then call T (G,w) :=Depth-First-Search(G,w),
T := T ∪ T (G,w)

Return T

Exercise. Use Depth-First-Search(G, v) algorithm for several large graphs. Find non-trivial examples.

Exercise. Study the Breadth-First-Search(G, v) algorithm from the textbook and write a pseudocode for its
recursive version.

1


