Summary on Lecture 15, February 10, 2016

More on Rooted Trees

Let $m \geq 1$. Recall that a rooted tree (T, r) is a complete m-ary tree if every vertex of T has either m children or no children. Mostly we are interested in the case $m=2$.

Lemma 1. Let (T, r) be a complete binary tree. Then $|V(T)|$ is odd.
Exercise. Prove Lemma 1 by induction.
We would like to count how many complete binary trees are there with $2 n+1$ vertices.
Let (T, r) be a complete binary tree with $2 n+1$ vertices. We use preorder listing to give a a list of all vertices (starting with the root): $r v_{1} v_{2} \ldots v_{2 n}$. We notice that every move from v_{i} to v_{i+1} has a direction: its either left (L) or right (R). Hence the list $r v_{1} v_{2} \ldots v_{2 n}$ gives a sequence of $2 n$ L's and R's. Then we notice:

- We visit first the "left" child, then the "right" one. Thus if we count how many L's and R's from the beginning to a given spot, we'll get that the number of L's is greater or equal to the number of R's.
- There are n L's and n R's.

We have seen this problem before, and conclude that the number of such listings (and, consequently, the number of complete binary graphs with $2 n+1$ vertices) is nothing but the Catalan number, namely, $\frac{1}{n+1}\binom{2 n}{n}$.
Now let $G=(V, E)$ be a connected graph without loops and multiple edges. We assume that the vertices of G are ordered, i.e., $V=\left\{v_{1}, \ldots, v_{n}\right\}$. We would like to find a spanning tree (T, r) (which is depth-first ordered rooted tree).

Here is a pseudocode for a recursive version of the Depth-First-Search algorithm:

```
Depth-First-Search (G,v)
    Let v:=\mp@subsup{v}{1}{}. Put v to the list T
    For all edges from v to w in E(G) do
        if w is not in T then call T(G,w):=Depth-First-Search(G,w),
        T:=T\cupT(G,w)
Return T
```

Exercise. Use Depth-First-Search (G, v) algorithm for several large graphs. Find non-trivial examples.
Exercise. Study the Breadth-First-Search (G, v) algorithm from the textbook and write a pseudocode for its recursive version.

