Summary on Lecture 14, February 8, 2016

Rooted Trees

I would like to describe rooted trees recursively.

Definition.

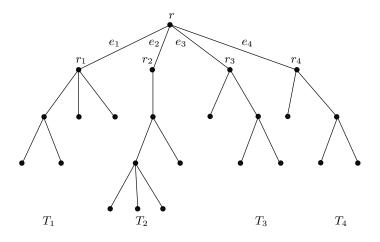
- (B) A graph T with one vertex v and no edges is a [trivial] rooted tree (T, v) with root v;
- (R) If (T,r) is a rooted tree with the root r, and T' is obtained by attaching a leaf to T, then (T',r) is a rooted tree with the root r.

Clearly this definition gives nothing but rooted trees.

Here is another way to describe the class of rooted trees recursively. We will define a class \mathcal{R} of ordered pairs (T,r) in which T is a tree and r is a vertex of T, called the root of the tree. For convenience, say that (T_1, r_1) and (T_2, r_2) are disjoint in case T_1 and T_2 have no vertices in common. If the pairs $(T_1, r_1), \ldots, (T_k, r_k)$ are disjoint, then we will say that T is obtained by hanging $(T_1, r_1), \ldots, (T_k, r_k)$ from r in case

- (1) r is not a vertex of any T_i ;
- (2) $V(T) = V(T_1) \cup \cdots \cup V(T_k) \cup \{r\};$
- (3) $E(T) = E(T_1) \cup \cdots \cup E(T_k) \cup \{e_1, \ldots, e_k\}$, where the edge e_i joins r to r_i .

Here is an illustration of this definition:



Here is the definition of the class \mathcal{R} (of rooted trees):

- (B) If T is a graph with one vertex v and no edges, then $(T, v) \in \mathcal{R}$;
- (R) If $(T_1, r_1), \ldots, (T_k, r_k)$ are disjoint members of \mathcal{R} and if (T, r) is obtained by hanging $(T_1, r_1), \ldots, (T_k, r_k)$ from r, then $(T, r) \in \mathcal{R}$.

Preorder and Postorder Listings. Let (T, v) be a rooted tree, where v is a root. For each child w of v we denote by (T_w, w) the rooted subtree of (T, v) which starts with the root w. There are two important algorithms to create preodered and postordered listings, **Preorder**(T, v) and **Postorder**(T, v). Here they are:

```
\begin{array}{l} \mathbf{Preorder}\left(T,v\right)\\ & \text{Put } v \text{ to the list } L(v)\\ & \text{for each child } w \text{ of } v \text{, from left to right do}\\ & \text{Attach } \mathbf{Preorder}\left(T_w,w\right) \text{ to the end of the list } L(v)\\ & \text{Return } L(v) \end{array}
```

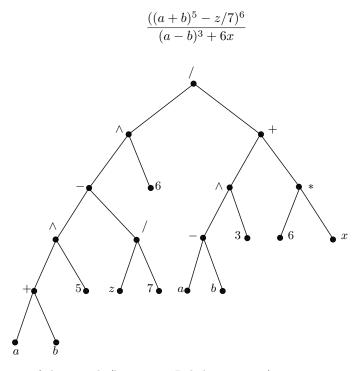
Here we created the list of vertices of (T, v), where all parents are listed before their children.

```
\begin{array}{l} \mathbf{Postorder}\left(T,v\right)\\ & \text{Start with empty list } L(v)\\ & \text{for each child } w \text{ of } v \text{, from left to right do}\\ & \text{Attach Postorder}\left(T_w,w\right) \text{ to the end of the list } L(v)\\ & \text{Put } v \text{ to the end of the list } L(v)\\ & \text{Return } L(v) \end{array}
```

Here we created the list of vertices of (T, v), where all children listed before their parents.

We say that a rooted tree (T, v) is binary if every vertex has at most two chidren. Then we say that (T, v) is a complete binary tree if every vertex has exactly two chidren. It is easy to show (by induction) that a complete binary tree has odd number of vertices.

Polish Notations. Now we describe an important application. Consider the formula:



Here is the *preorder listing* of this graph (known as *Polish notations*):

 $/ \wedge - \wedge + a \ b \ 5 \ / \ z \ 7 \ 6 \ + \ \wedge \ - a \ b \ 3 \ * 6 \ x$