Summary on Lecture 12, February 3, 2016

More on Chromatic Polynomials

Let $G=(V, E)$ be a graph, and e be its edge with vertices a and b. We denote by G_{e} the graph which is obtained by removing the edge e. Let G_{e}^{\prime} be a graph which is obtained from G_{e} by identifying the vertices a and b, see Fig. 3. Last time we proved the following Theorem:

Fig. 3. The graphs G, G_{e} and G_{e}^{\prime}
Theorem 1. Let $G=(V, E)$ be a connected graph, and $e \in E$. Then

$$
P\left(G_{e}, \lambda\right)=P(G, \lambda)+P\left(G_{e}^{\prime}, \lambda\right)
$$

Proof. Let $e=\{a, b\}$. Consider the value $P\left(G_{e}, \lambda\right)$. There are two possibilities here: either the vertices a and b have the same color or not. If they are of different colors, then it corresponds to a proper coloring of G. If they are the same, then it corresponds to a proper coloring of G_{e}^{\prime}.
Lemma 1. Let T be a tree with n vertices. Then $P(T, \lambda)=\lambda(\lambda-1)^{n-1}$.
Proof. Induction on n. If $n=1$, then obviously $P(T, \lambda)=\lambda$. Let $n>1$. We find an edge e such that $e=\{a, b\}$, where a is a leaf. Then T_{e} is a disjoint union of a tree on $(n-1)$ vertices and a single vertex, and T_{e}^{\prime} is a tree on $(n-1)$ vertices, see Fig. 4

Fig. 4. The graphs T, T_{e} and T_{e}^{\prime}
By induction, we have that $P\left(\lambda, T_{e}^{\prime}\right)=\lambda(\lambda-1)^{n-2}$, and $P\left(\lambda, T_{e}\right)=\lambda(\lambda-1)^{n-2} \cdot \lambda=\lambda^{2}(\lambda-1)^{n-2}$. Then

$$
P(\lambda, T)=P\left(\lambda, T_{e}\right)-P\left(\lambda, T_{e}^{\prime}\right)=\lambda^{2}(\lambda-1)^{n-2}-\lambda(\lambda-1)^{n-2}=\lambda(\lambda-1)^{n-1}
$$

This completes the induction.
Lemma 2. Let C_{n} be a cycle on n vertices. Then $P\left(C_{n}, \lambda\right)=(\lambda-1)^{n}+(-1)^{n}(\lambda-1)$.
Proof. Induction on n. If $n=3, C_{3}=K_{3}$, so we check

$$
P\left(K_{3}, \lambda\right)=\lambda(\lambda-1)(\lambda-2)=(\lambda-1)^{2}+(-1)^{2}(\lambda-1)=(\lambda-1)(\lambda-1-1) .
$$

Let $n>3$, and e be an edge of C_{n}. Then $\left(C_{n}\right)_{e}$ is just a path on n vertices, and $\left(C_{n}\right)_{e}^{\prime}=C_{n-1}$ is just a cycle on $(n-1)$ vertices. We have

$$
\begin{aligned}
P\left(C_{n}, \lambda\right) & =P\left(\left(C_{n}\right)_{e}, \lambda\right)-P\left(C_{n-1}, \lambda\right) \\
& =\lambda(\lambda-1)^{n-1}-(\lambda-1)^{n-1}-(-1)^{n-1}(\lambda-1) \\
& =(\lambda-1)^{n}+(-1)^{n}(\lambda-1) .
\end{aligned}
$$

This completes the induction.
Remark. We notice that $P\left(C_{n}, 1\right)=0$, and $P\left(C_{n}, 2\right)=1+(-1)^{n}$. Hence $P\left(C_{n}, 2\right)=2$ if n is even, and $P\left(C_{n}, 2\right)=0$ if n is odd. Let $n=2 k+1$, then $P\left(C_{2 k+1}, 3\right)=2^{2 k+1}-2=2\left(2^{2 k}-1\right)$. We conclude that $\chi\left(C_{n}\right)=2$ if n is even and $\chi\left(C_{n}\right)=2\left(2^{2 k}-1\right)$ if $n=2 k+1$.
We define a wheel on $(n+1)$ vertices W_{n+1} by taking a cycle on n vertices and connecting each vertex of a cycle to one more $(n+1)$ the vertex.
Lemma 3. Let W_{n+1} be a wheel on $(n+1)$ vertices. Then $P\left(W_{n+1}, \lambda\right)=\lambda(\lambda-2)^{n}-(-1)^{n} \lambda(\lambda-2)$.
Proof. We assign an arbitrary color to the centeral vertex, then we can use $(\lambda-1)$ colors for the remaining vertices. We obtain:

$$
P\left(W_{n+1}, \lambda\right)=\lambda\left[(\lambda-1-1)^{n}-(-1)^{n}(\lambda-1-1)\right]=\lambda(\lambda-2)^{n}-(-1)^{n} \lambda(\lambda-2)
$$

This proves Lemma 3.
We make two observations about the chromatic polynomial. Let $G=(V, E)$, and

$$
P(G, \lambda)=a_{0}+a_{1} \lambda+\cdots+a_{d} \lambda^{d} .
$$

(1) The coefficient $a_{0}=0$. Indeed, $P(G, 0)=a_{0}$ and at the same time is a number of proper colorings of G with 0 colors, i.e., $a_{0}=0$.
(2) Assume that $|E|>0$. Then $a_{1}+a_{2}+\cdots+a_{d}=P(G, 1)=0$. Indeed, if G contains an edge, then we cannot give proper colorings of G with 1 color.

Lemma 4. Let G_{1} and G_{2} share a single vertex, i.e., $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$. Then

$$
P\left(G_{1} \cup G_{2}, \lambda\right)=\frac{P\left(G_{1}, \lambda\right) \cdot P\left(G_{2}, \lambda\right)}{\lambda}
$$

Proof. Let us give a coloring to G_{2}. Then the vertex v receives some color λ_{0}. Then we count how many ways to color G_{1} so that v is colored with given color λ_{0}. Let $Q\left(G_{1} ; v, \lambda, \lambda_{0}\right)$ be the result. Because of the symmetry with respect to colors, $Q\left(G_{1} ; v, \lambda, \lambda_{0}\right)$ is the same for any choice of λ_{0}. On the other hand, by taking every value of λ_{0}, we count all colorings of the graph G_{1}. We conclude that $Q\left(G_{1} ; v, \lambda, \lambda_{0}\right) \lambda=P\left(G_{1}, \lambda\right)$, or

$$
Q\left(G_{1} ; v, \lambda, \lambda_{0}\right)=\frac{P\left(G_{1}, \lambda\right)}{\lambda}
$$

We obtain that all colorings of $G_{1} \cup G_{2}$ are given by

$$
\frac{P\left(G_{1}, \lambda\right)}{\lambda} \cdot P\left(G_{2}, \lambda\right)=\frac{P\left(G_{1}, \lambda\right) \cdot P\left(G_{2}, \lambda\right)}{\lambda} .
$$

This completes the proof.
Lemma 5. Let G_{1} and G_{2} be such that $G_{1} \cap G_{2}=K_{n}$. Then

$$
P\left(G_{1} \cup G_{2}, \lambda\right)=\frac{P\left(G_{1}, \lambda\right) \cdot P\left(G_{2}, \lambda\right)}{P\left(K_{n}, \lambda\right)}=\frac{P\left(G_{1}, \lambda\right) \cdot P\left(G_{2}, \lambda\right)}{\lambda^{(n)}}
$$

(Recall that $\left.\lambda^{(n)}:=\lambda(\lambda-1)(\lambda-2) \cdots(\lambda-n+1).\right)$
Exercise. Prove Lemma 5.

