
Math 232, Winter 2015 Boris Botvinnik

Summary on Lecture 4, January 9, 2015

Second Order Recurrence Relations: the case of complex roots.

Again, we assume that we have a second order recurrence relation, i.e. a0 , a1 , are given and an = Aan−1+Ban−2 ,
n ≥ 3, where the coefficients A and B are real numbers (in fact, they are integers in all our examples). Then
the characteristic equation is given as r2 − Ar − B = 0. Assume that the roots r1 , r2 are complex. Obviously,
it means that r1 and r2 are conjugate, i.e., we can write r1 = ρ(cos θ+ i sin θ), and r2 = ρ(cos θ− i sin θ). Thus
we may look for a solution for an in the form:

an = c1r
n
1 + c2r

n
2

= c1ρ
n(cosnθ + i sinnθ) + c2ρ

n(cosnθ − i sinnθ)

= ρn((c1 + c2) cosnθ + i(c1 − c2) sinnθ)

= ρn(K1 cosnθ +K2 sinnθ).

Here K1 = (c1+c2) and K2 = i(c1−c2). In particular, it means that the expression an = ρn(K1 cosnθ+K2 sinnθ)
satisfies the recurrence relation we started with. We also notice that K1 and K2 are assumed to be real. Since
a0 and a1 are given, we find them by substituting n = 0 and n = 1:{

K1 cos 0 +K2 sin 0 = a0
ρ(K1 cos θ +K2 sin θ) = a1

or

{
K1 = a0
ρ(K1 cos θ +K2 sin θ) = a1

We notice that the system always has a solution provided ρ sin θ 6= 0 for arbitrary initial coefficients a0 and a1 .
On the other hand, the condition ρ sin θ = 0 means that either ρ = 0 or sin θ = 0. Each of those imply that the
roots r1 r2 are real.

We summarize the above discussion:

Theorem 3. Let a0 and a1 are given, and an = Aan−1 + Ban−2 be a recurrence relation, n ≥ 2, where A,B
are non-zero real constants. Assume that the characteristic equation r2 −Ar −B = 0 has two complex roots

r1 = ρ(cos θ + i sin θ), r2 = ρ(cos θ − i sin θ),

Then an = ρn(K1 cosnθ +K2 sinnθ), where the coefficients K1 , K2 are determined by solving the system{
K1 = a0
ρ(K1 cos θ +K2 sin θ) = a1

The Method of Generating Functions.

There is another powerful technique to resolve recurrence relations. Let a0, a1, . . . , an, . . . be a sequence of
real numbers. Then the series

f(x) =

∞∑
i=0

aix
i

is called a generating function for the sequence {ai} .

Examples. (1) The function

f(x) = (1 + x)n =

n∑
i=0

(
n

i

)
xi

is a generating function for the sequence
(
n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
, 0, . . . .

1



(2) We notice that 1− xn+1 = (1− x)(1 + x+ x2 + · · ·+ xn). This gives the generating function

1− xn+1

1− x

for the sequence 1, 1, . . . , 1, 0, 0, . . . .

(3) Similarly to the previous example, we notice that 1 = (1 − x)(1 + x + x2 + · · · + xn + · · ·). This gives the
generating function

1

1− x
=

∞∑
i=0

xi

for the sequence 1, 1, . . . , 1, . . . .

(4) Now we take a derivative of both sides of the generating function:

d

dx

1

1− x
=

∞∑
i=0

d

dx
xi

Since d
dx

1
1−x = 1

(1−x)2 , we obtain the identity:

1

(1− x)2
= 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1 + · · ·

Thus the function 1
(1−x)2 is a generating function for the sequence 1, 2, 3, 4, . . . , n, . . . . We also notice that the

function
x

(1− x)2
= 0 + x+ 2x2 + 3x3 + 4x4 + · · ·+ nxn + · · ·

is a generating function for the sequence 0, 1, 2, 3, 4, . . . , n, . . . .

(5) We take one more derivative: Now we take a derivative of both sides of the generating function:

d

dx

x

(1− x)2
=

d

dx
(0 + x+ 2x2 + 3x3 + 4x4 + · · ·+ nxn + · · ·)

Since d
dx

x
(1−x)2 = x+1

(1−x)3 , we obtain the identity:

x+ 1

(1− x)3
= 1 + 22x+ 32x2 + 42x3 + · · ·+ n2xn−1 + · · ·

Thus the function x+1
(1−x)3 is a generating function for the sequence 12, 22, 32, 42, . . . , n2, . . . . Then we see that the

function
x(x+ 1)

(1− x)3
= 0 + x+ 22x2 + 32x3 + 42x4 + · · ·+ n2xn + · · ·

is a generating function for the sequence 02, 12, 22, 32, 42, . . . , n2, . . . .
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