Summary on Lecture 4, January 9, 2015

Second Order Recurrence Relations: the case of complex roots.

Again, we assume that we have a second order recurrence relation, i.e. a_0 , a_1 , are given and $a_n = Aa_{n-1} + Ba_{n-2}$, $n \ge 3$, where the coefficients A and B are real numbers (in fact, they are integers in all our examples). Then the characteristic equation is given as $r^2 - Ar - B = 0$. Assume that the roots r_1 , r_2 are complex. Obviously, it means that r_1 and r_2 are conjugate, i.e., we can write $r_1 = \rho(\cos \theta + i \sin \theta)$, and $r_2 = \rho(\cos \theta - i \sin \theta)$. Thus we may look for a solution for a_n in the form:

$$a_n = c_1 r_1^n + c_2 r_2^n$$

= $c_1 \rho^n (\cos n\theta + i \sin n\theta) + c_2 \rho^n (\cos n\theta - i \sin n\theta)$
= $\rho^n ((c_1 + c_2) \cos n\theta + i(c_1 - c_2) \sin n\theta)$
= $\rho^n (K_1 \cos n\theta + K_2 \sin n\theta).$

Here $K_1 = (c_1+c_2)$ and $K_2 = i(c_1-c_2)$. In particular, it means that the expression $a_n = \rho^n(K_1 \cos n\theta + K_2 \sin n\theta)$ satisfies the recurrence relation we started with. We also notice that K_1 and K_2 are assumed to be real. Since a_0 and a_1 are given, we find them by substituting n = 0 and n = 1:

$$\begin{cases} K_1 \cos 0 + K_2 \sin 0 &= a_0 \\ \rho(K_1 \cos \theta + K_2 \sin \theta) &= a_1 \end{cases} \quad \text{or} \quad \begin{cases} K_1 &= a_0 \\ \rho(K_1 \cos \theta + K_2 \sin \theta) &= a_1 \end{cases}$$

We notice that the system always has a solution provided $\rho \sin \theta \neq 0$ for arbitrary initial coefficients a_0 and a_1 . On the other hand, the condition $\rho \sin \theta = 0$ means that either $\rho = 0$ or $\sin \theta = 0$. Each of those imply that the roots r_1 r_2 are real.

We summarize the above discussion:

Theorem 3. Let a_0 and a_1 are given, and $a_n = Aa_{n-1} + Ba_{n-2}$ be a recurrence relation, $n \ge 2$, where A, B are non-zero real constants. Assume that the characteristic equation $r^2 - Ar - B = 0$ has two complex roots

$$r_1 = \rho(\cos\theta + i\sin\theta), \quad r_2 = \rho(\cos\theta - i\sin\theta),$$

Then $a_n = \rho^n (K_1 \cos n\theta + K_2 \sin n\theta)$, where the coefficients K_1, K_2 are determined by solving the system

$$\begin{cases} K_1 = a_0\\ \rho(K_1\cos\theta + K_2\sin\theta) = a_1 \end{cases}$$

The Method of Generating Functions.

There is another powerful technique to resolve recurrence relations. Let $a_0, a_1, \ldots, a_n, \ldots$ be a sequence of real numbers. Then the series

$$f(x) = \sum_{i=0}^{\infty} a_i x^i$$

is called a generating function for the sequence $\{a_i\}$.

Examples. (1) The function

$$f(x) = (1+x)^n = \sum_{i=0}^n \binom{n}{i} x^i$$

is a generating function for the sequence $\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}, 0, \ldots$

(2) We notice that $1 - x^{n+1} = (1 - x)(1 + x + x^2 + \dots + x^n)$. This gives the generating function

$$\frac{1-x^{n+1}}{1-x}$$

for the sequence 1, 1, ..., 1, 0, 0, ...

(3) Similarly to the previous example, we notice that $1 = (1 - x)(1 + x + x^2 + \dots + x^n + \dots)$. This gives the generating function

$$\frac{1}{1-x} = \sum_{i=0}^{\infty} x^i$$

for the sequence $1, 1, \ldots, 1, \ldots$

(4) Now we take a derivative of both sides of the generating function:

$$\frac{d}{dx}\frac{1}{1-x} = \sum_{i=0}^{\infty} \frac{d}{dx}x^i$$

Since $\frac{d}{dx}\frac{1}{1-x} = \frac{1}{(1-x)^2}$, we obtain the identity:

$$\frac{1}{(1-x)^2} = 1 + 2x + 3x^2 + 4x^3 + \dots + nx^{n-1} + \dots$$

Thus the function $\frac{1}{(1-x)^2}$ is a generating function for the sequence $1, 2, 3, 4, \ldots, n, \ldots$ We also notice that the function

$$\frac{x}{(1-x)^2} = 0 + x + 2x^2 + 3x^3 + 4x^4 + \dots + nx^n + \dots$$

is a generating function for the sequence $0, 1, 2, 3, 4, \ldots, n, \ldots$

(5) We take one more derivative: Now we take a derivative of both sides of the generating function:

$$\frac{d}{dx}\frac{x}{(1-x)^2} = \frac{d}{dx}(0+x+2x^2+3x^3+4x^4+\dots+nx^n+\dots)$$

Since $\frac{d}{dx}\frac{x}{(1-x)^2} = \frac{x+1}{(1-x)^3}$, we obtain the identity:

$$\frac{x+1}{(1-x)^3} = 1 + 2^2x + 3^2x^2 + 4^2x^3 + \dots + n^2x^{n-1} + \dots$$

Thus the function $\frac{x+1}{(1-x)^3}$ is a generating function for the sequence $1^2, 2^2, 3^2, 4^2, \ldots, n^2, \ldots$ Then we see that the function

$$\frac{x(x+1)}{(1-x)^3} = 0 + x + 2^2 x^2 + 3^2 x^3 + 4^2 x^4 + \dots + n^2 x^n + \dots$$

is a generating function for the sequence $0^2, 1^2, 2^2, 3^2, 4^2, \ldots, n^2, \ldots$