Summary on Lecture 4, January 9, 2015

Second Order Recurrence Relations: the case of complex roots.

Again, we assume that we have a second order recurrence relation, i.e. a_{0}, a_{1}, are given and $a_{n}=A a_{n-1}+B a_{n-2}$, $n \geq 3$, where the coefficients A and B are real numbers (in fact, they are integers in all our examples). Then the characteristic equation is given as $r^{2}-A r-B=0$. Assume that the roots r_{1}, r_{2} are complex. Obviously, it means that r_{1} and r_{2} are conjugate, i.e., we can write $r_{1}=\rho(\cos \theta+i \sin \theta)$, and $r_{2}=\rho(\cos \theta-i \sin \theta)$. Thus we may look for a solution for a_{n} in the form:

$$
\begin{aligned}
a_{n} & =c_{1} r_{1}^{n}+c_{2} r_{2}^{n} \\
& =c_{1} \rho^{n}(\cos n \theta+i \sin n \theta)+c_{2} \rho^{n}(\cos n \theta-i \sin n \theta) \\
& =\rho^{n}\left(\left(c_{1}+c_{2}\right) \cos n \theta+i\left(c_{1}-c_{2}\right) \sin n \theta\right) \\
& =\rho^{n}\left(K_{1} \cos n \theta+K_{2} \sin n \theta\right) .
\end{aligned}
$$

Here $K_{1}=\left(c_{1}+c_{2}\right)$ and $K_{2}=i\left(c_{1}-c_{2}\right)$. In particular, it means that the expression $a_{n}=\rho^{n}\left(K_{1} \cos n \theta+K_{2} \sin n \theta\right)$ satisfies the recurrence relation we started with. We also notice that K_{1} and K_{2} are assumed to be real. Since a_{0} and a_{1} are given, we find them by substituting $n=0$ and $n=1$:

$$
\left\{\begin{array} { l l l }
{ K _ { 1 } \operatorname { c o s } 0 + K _ { 2 } \operatorname { s i n } 0 } & { = a _ { 0 } } \\
{ \rho (K _ { 1 } \operatorname { c o s } \theta + K _ { 2 } \operatorname { s i n } \theta) } & { = a _ { 1 } }
\end{array} \text { or } \quad \left\{\begin{array}{lll}
K_{1} & =a_{0} \\
\rho\left(K_{1} \cos \theta+K_{2} \sin \theta\right) & = & a_{1}
\end{array}\right.\right.
$$

We notice that the system always has a solution provided $\rho \sin \theta \neq 0$ for arbitrary initial coefficients a_{0} and a_{1}. On the other hand, the condition $\rho \sin \theta=0$ means that either $\rho=0$ or $\sin \theta=0$. Each of those imply that the roots $r_{1} r_{2}$ are real.
We summarize the above discussion:
Theorem 3. Let a_{0} and a_{1} are given, and $a_{n}=A a_{n-1}+B a_{n-2}$ be a recurrence relation, $n \geq 2$, where A, B are non-zero real constants. Assume that the characteristic equation $r^{2}-A r-B=0$ has two complex roots

$$
r_{1}=\rho(\cos \theta+i \sin \theta), \quad r_{2}=\rho(\cos \theta-i \sin \theta)
$$

Then $a_{n}=\rho^{n}\left(K_{1} \cos n \theta+K_{2} \sin n \theta\right)$, where the coefficients K_{1}, K_{2} are determined by solving the system

$$
\left\{\begin{array}{lll}
K_{1} & = & a_{0} \\
\rho\left(K_{1} \cos \theta+K_{2} \sin \theta\right) & = & a_{1}
\end{array}\right.
$$

The Method of Generating Functions.

There is another powerful technique to resolve recurrence relations. Let $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ be a sequence of real numbers. Then the series

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

is called a generating function for the sequence $\left\{a_{i}\right\}$.
Examples. (1) The function

$$
f(x)=(1+x)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i}
$$

is a generating function for the sequence $\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}, 0, \ldots$
(2) We notice that $1-x^{n+1}=(1-x)\left(1+x+x^{2}+\cdots+x^{n}\right)$. This gives the generating function

$$
\frac{1-x^{n+1}}{1-x}
$$

for the sequence $1,1, \ldots, 1,0,0, \ldots$.
(3) Similarly to the previous example, we notice that $1=(1-x)\left(1+x+x^{2}+\cdots+x^{n}+\cdots\right)$. This gives the generating function

$$
\frac{1}{1-x}=\sum_{i=0}^{\infty} x^{i}
$$

for the sequence $1,1, \ldots, 1, \ldots$.
(4) Now we take a derivative of both sides of the generating function:

$$
\frac{d}{d x} \frac{1}{1-x}=\sum_{i=0}^{\infty} \frac{d}{d x} x^{i}
$$

Since $\frac{d}{d x} \frac{1}{1-x}=\frac{1}{(1-x)^{2}}$, we obtain the identity:

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\cdots+n x^{n-1}+\cdots
$$

Thus the function $\frac{1}{(1-x)^{2}}$ is a generating function for the sequence $1,2,3,4, \ldots, n, \ldots$ We also notice that the function

$$
\frac{x}{(1-x)^{2}}=0+x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots+n x^{n}+\cdots
$$

is a generating function for the sequence $0,1,2,3,4, \ldots, n, \ldots$.
(5) We take one more derivative: Now we take a derivative of both sides of the generating function:

$$
\frac{d}{d x} \frac{x}{(1-x)^{2}}=\frac{d}{d x}\left(0+x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots+n x^{n}+\cdots\right)
$$

Since $\frac{d}{d x} \frac{x}{(1-x)^{2}}=\frac{x+1}{(1-x)^{3}}$, we obtain the identity:

$$
\frac{x+1}{(1-x)^{3}}=1+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+\cdots+n^{2} x^{n-1}+\cdots
$$

Thus the function $\frac{x+1}{(1-x)^{3}}$ is a generating function for the sequence $1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots, n^{2}, \ldots$ Then we see that the function

$$
\frac{x(x+1)}{(1-x)^{3}}=0+x+2^{2} x^{2}+3^{2} x^{3}+4^{2} x^{4}+\cdots+n^{2} x^{n}+\cdots
$$

is a generating function for the sequence $0^{2}, 1^{2}, 2^{2}, 3^{2}, 4^{2}, \ldots, n^{2}, \ldots$

